Browsing by Subject "Holography and quark-gluon plasmas"

Sort by: Order: Results:

Now showing items 1-5 of 5
  • Annala, Eemeli; Ecker, Christian; Hoyos, Carlos; Jokela, Niko; Rodriguez Fernandez, David; Vuorinen, Aleksi (2018)
    We investigate a simple holographic model for cold and dense deconfined QCD matter consisting of three quark flavors. Varying the single free parameter of the model and utilizing a Chiral Effective Theory equation of state (EoS) for nuclear matter, we find four different compact star solutions: traditional neutron stars, strange quark stars, as well as two non-standard solutions we refer to as hybrid stars of the second and third kind (HS2 and HS3). The HS2s are composed of a nuclear matter core and a crust made of stable strange quark matter, while the HS3s have both a quark mantle and a nuclear crust on top of a nuclear matter core. For all types of stars constructed, we determine not only their mass-radius relations, but also tidal deformabilities, Love numbers, as well as moments of inertia and the mass distribution. We find that there exists a range of parameter values in our model, for which the novel hybrid stars have properties in very good agreement with all existing bounds on the stationary properties of compact stars. In particular, the tidal deformabilities of these solutions are smaller than those of ordinary neutron stars of the same mass, implying that they provide an excellent fit to the recent gravitational wave data GW170817 of LIGO and Virgo. The assumptions underlying the viability of the different star types, in particular those corresponding to absolutely stable quark matter, are finally discussed at some length.
  • DiNunno, Brandon S.; Grozdanov, Saso; Pedraza, Juan F.; Young, Steve (2017)
    In large-N-c conformal field theories with classical holographic duals, inverse coupling constant corrections are obtained by considering higher-derivative terms in the corresponding gravity theory. In this work, we use type IIB supergravity and bottom-up Gauss-Bonnet gravity to study the dynamics of boost-invariant Bjorken hydrodynamics at finite coupling. We analyze the time-dependent decay properties of non-local observables (scalar two-point functions and Wilson loops) probing the different models of Bjorken flow and show that they can be expressed generically in terms of a few field theory parameters. In addition, our computations provide an analytically quanti fiable probe of the coupling-dependent validity of hydrodynamics at early times in a simple model of heavyion collisions, which is an observable closely analogous to the hydrodynamization time of a quark-gluon plasma. We find that to third order in the hydrodynamic expansion, the convergence of hydrodynamics is improved and that generically, as expected from field theory considerations and recent holographic results, the applicability of hydrodynamics is delayed as the field theory coupling decreases.
  • Jokela, Niko; Järvinen, Matti; Remes, Jere (2019)
    We use the holographic V-QCD models to analyse the physics of dense QCD and neutron stars. Accommodating lattice results for thermodynamics of QCD enables us to make generic predictions for the Equation of State (EoS) of the quark matter phase in the cold and dense regime. We demonstrate that the resulting pressure in V-QCD matches well with a family of neutron-star-matter EoSs that interpolate between state-of-the-art theoretical results for low and high density QCD. After implementing the astrophysical constraints, i.e., the largest known neutron star mass and the recent LIGO/Virgo results for the tidal deformability, we analyse the phase transition between the baryonic and quark matter phases. We find that the baryon density nB at the transition is at least 2.9 times the nuclear saturation density ns. The transition is of strongly first order at low and intermediate densities, i.e., for nB/ns ≲ 7.5.
  • Henriksson, Oscar; Hoyos, Carlos; Jokela, Niko (2019)
    We revisit the large-N-c phase diagram of N = 4 super Yang-Mills theory at finite R-charge density and strong coupling, by means of the AdS/CFT correspondence. We conjecture new phases that result from a black hole shedding some of its charge through the nucleation of probe color D3-branes that remain at a finite distance from the black hole when the dual field theory lives on a sphere. In the corresponding ground states the color group is partially Higgsed, so these phases can be identified as having a type of color superconductivity. The new phases would appear at intermediate values of the R-charge chemical potential and we expect them to be metastable but long-lived in the large-N-c limit.
  • Ecker, Christian; Hoyos, Carlos; Jokela, Niko; Rodriguez Fernandez, David; Vuorinen, Aleksi (2017)
    According to common lore, Equations of State of field theories with gravity duals tend to be soft, with speeds of sound either below or around the conformal value of v(s) = 1/root 3. This has important consequences in particular for the physics of compact stars, where the detection of two solar mass neutron stars has been shown to require very stiff equations of state. In this paper, we show that no speed limit exists for holographic models at finite density, explicitly constructing examples where the speed of sound becomes arbitrarily close to that of light. This opens up the possibility of building hybrid stars that contain quark matter obeying a holographic equation of state in their cores.