Browsing by Subject "Hypertrophic cardiomyopathy"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Hathaway, Julie; Heliö, Krista; Saarinen, Inka; Tallila, Jonna; Seppala, Eija H.; Tuupanen, Sari; Turpeinen, Hannu; Kangas-Kontio, Tiia; Schleit, Jennifer; Tommiska, Johanna; Kytola, Ville; Valori, Miko; Muona, Mikko; Sistonen, Johanna; Gentile, Massimiliano; Salmenpera, Pertteli; Myllykangas, Samuel; Paananen, Jussi; Alastalo, Tero-Pekka; Helio, Tiina; Koskenvuo, Juha (2021)
    Background Genetic testing in hypertrophic cardiomyopathy (HCM) is a published guideline-based recommendation. The diagnostic yield of genetic testing and corresponding HCM-associated genes have been largely documented by single center studies and carefully selected patient cohorts. Our goal was to evaluate the diagnostic yield of genetic testing in a heterogeneous cohort of patients with a clinical suspicion of HCM, referred for genetic testing from multiple centers around the world. Methods A retrospective review of patients with a suspected clinical diagnosis of HCM referred for genetic testing at Blueprint Genetics was undertaken. The analysis included syndromic, myopathic and metabolic etiologies. Genetic test results and variant classifications were extracted from the database. Variants classified as pathogenic (P) or likely pathogenic (LP) were considered diagnostic. Results A total of 1376 samples were analyzed. Three hundred and sixty-nine tests were diagnostic (26.8%); 373 P or LP variants were identified. Only one copy number variant was identified. The majority of diagnostic variants involved genes encoding the sarcomere (85.0%) followed by 4.3% of diagnostic variants identified in the RASopathy genes. Two percent of diagnostic variants were in genes associated with a cardiomyopathy other than HCM or an inherited arrhythmia. Clinical variables that increased the likelihood of identifying a diagnostic variant included: an earlier age at diagnosis (p <0.0001), a higher maximum wall thickness (MWT) (p <0.0001), a positive family history (p <0.0001), the absence of hypertension (p = 0.0002), and the presence of an implantable cardioverter-defibrillator (ICD) (p = 0.0004). Conclusion The diagnostic yield of genetic testing in this heterogeneous cohort of patients with a clinical suspicion of HCM is lower than what has been reported in well-characterized patient cohorts. We report the highest yield of diagnostic variants in the RASopathy genes identified in a laboratory cohort of HCM patients to date. The spectrum of genes implicated in this unselected cohort highlights the importance of pre-and post-test counseling when offering genetic testing to the broad HCM population.
  • ERN GUARD-HEART European Reference; Norrish, Gabrielle; Qu, Chen; Field, Ella; Ojala, Tiina H.; Kaski, Juan P. (2022)
    Aims Sudden cardiac death (SCD) is the most common mode of death in childhood hypertrophic cardiomyopathy (HCM). The newly developed HCM Risk-Kids model provides clinicians with individualized estimates of risk. The aim of this study was to externally validate the model in a large independent, multi-centre patient cohort. Methods and results A retrospective, longitudinal cohort of 421 patients diagnosed with HCM aged 1-16 years independent of the HCM Risk-Kids development and internal validation cohort was studied. Data on HCM Risk-Kids predictor variables (unexplained syncope, non-sustained ventricular tachycardia, maximal left ventricular wall thickness, left atrial diameter, and left ventricular outflow tract gradient) were collected from the time of baseline clinical evaluation. The performance of the HCM Risk-Kids model in predicting risk at 5 years was assessed. Twenty-three patients (5.4%) met the SCD end-point within 5 years, with an overall incidence rate of 2.03 per 100 patient-years [95% confidence interval (CI) 1.48-2.78]. Model validation showed a Harrell's C-index of 0.745 (95% CI 0.52-0.97) and Uno's C-index 0.714 (95% 0.58-0.85) with a calibration slope of 1.15 (95% 0.51-1.80). A 5-year predicted risk threshold of >= 6% identified 17 (73.9%) SCD events with a corresponding C-statistic of 0.702 (95% CI 0.60-0.81). Conclusions This study reports the first external validation of the HCM Risk-Kids model in a large and geographically diverse patient population. A 5-year predicted risk of >= 6% identified over 70% of events, confirming that HCM Risk-Kids provides a method for individualized risk predictions and shared decision-making in children with HCM.
  • FinHCM Study Grp; Jääskeläinen, Pertti; Vangipurapu, Jagadish; Raivo, Joose; Kuulasmaa, Teemu; Helio, Tiina; Aalto-Setala, Katriina; Kaartinen, Maija; Ilveskoski, Erkki; Vanninen, Sari; Hämäläinen, Liisa; Melin, John; Kokkonen, Jorma; Nieminen, Markku S.; Laakso, Markku; Kuusisto, Johanna; Kervinen, Helena; Mustonen, Juha; Juvonen, Jukka; Niemi, Mari; Uusimaa, Paavo; Junttila, Juhani; Kotila, Matti; Pietila, Mikko; Jyrkila, Heini; Mahonen, Ilkka; Vartia, Paula (2019)
    Aims Nationwide large-scale genetic and outcome studies in cohorts with hypertrophic cardiomyopathy (HCM) have not been previously published. Methods and results We sequenced 59 cardiomyopathy-associated genes in 382 unrelated Finnish patients with HCM and found 24 pathogenic or likely pathogenic mutations in six genes in 38.2% of patients. Most mutations were located in sarcomere genes (MYBPC3, MYH7, TPM1, and MYL2). Previously reported mutations by our study group (MYBPC3-Gln1061Ter, MYH7-Arg1053Gln, and TPM1-Asp175Asn) and a fourth major mutation MYH7-Val606Met accounted for 28.0% of cases. Mutations in GLA and PRKAG2 were found in three patients. Furthermore, we found 49 variants of unknown significance in 31 genes in 20.4% of cases. During a 6.7 +/- 4.2 year follow-up, annual all-cause mortality in 482 index patients and their relatives with HCM was higher than that in the matched Finnish population (1.70 vs. 0.87%; P <0.001). Sudden cardiac deaths were rare (n = 8). Systolic heart failure (hazard ratio 17.256, 95% confidence interval 3.266-91.170, P = 0.001) and maximal left ventricular wall thickness (hazard ratio 1.223, 95% confidence interval 1.098-1.363, P <0.001) were independent predictors of HCM-related mortality and life-threatening cardiac events. The patients with a pathogenic or likely pathogenic mutation underwent an implantable cardioverter defibrillator implantation more often than patients without a pathogenic or likely pathogenic mutation (12.9 vs. 3.5%, P <0.001), but there was no difference in all-cause or HCM-related mortality between the two groups. Mortality due to HCM during 10 year follow-up among the 5.2 million population of Finland was studied from death certificates of the National Registry, showing 269 HCM-related deaths, of which 32% were sudden. Conclusions We identified pathogenic and likely pathogenic mutations in 38% of Finnish patients with HCM. Four major sarcomere mutations accounted for 28% of HCM cases, whereas HCM-related mutations in non-sarcomeric genes were rare. Mortality in patients with HCM exceeded that of the general population. Finally, among 5.2 million Finns, there were at least 27 HCM-related deaths annually.
  • Jalanko, Mikko; Heliö, Tiina; Mustonen, Pirjo; Kokkonen, Jorma; Huhtala, Heini; Laine, Mika; Jääskeläinen, Pertti; Tarkiainen, Mika; Lauerma, Kirsi; Sipola, Petri; Laakso, Markku; Kuusisto, Johanna; Nikus, Kjell (2018)
    Objectives: The sensitivity and specificity of the conventional 12-lead ECG to identify carriers of hypertrophic cardiomyopathy (HCM) - causing mutations without left ventricular hypertrophy (LVH) has been limited. We assessed the ability of novel electrocardiographic parameters to improve the detection of HCM mutation carriers. Methods: We studied 140 carriers (G+) of the TPM7-Asp175Asn or MYBPC3-Glnl 061X pathogenic variants for HCM: The G+/LVH+ group (n = 98) consisted of mutation carriers with LVH and the G+/LVH- group (n = 42) without LVH. The control group consisted of 30 subjects. The standard 12-lead ECG was comprehensively analyzed and two novel ECG variables were introduced: RVlRV3 and septal remodeling. A subset of 65 individuals underwent cardiac magnetic resonance imaging and 2D strain echocardiography. Results: Conventional major ECG criteria were sensitive (90%) and specific (97%) in identifying G+/LVH+ subjects. RV1RV3 and septal remodeling were more prevalent in the G+/LVH- subjects compared to the control group (33% vs 3%, p = 0.005 and 45% vs 3%, p <0.001, respectively). The combination of RVlRV3 and Q waves and repolarization abnormalities (QR) differentiated between the G+/LVH- subjects and the control group with a sensitivity of 52% and specificity of 97%. The combination of septa] remodeling and QR differentiated between G+/LVH- subjects and the control group with a sensitivity of 64% and specificity of 97%. Conclusions: The novel ECG-parameters RVlRV3 and septal remodeling were effective in identifying G+/LVH-subjects and could be useful in the diagnostics of new suspected HCM patients and in the screening and follow-up of HCM families. (C) 2018 Elsevier Inc. All rights reserved.