Browsing by Subject "IBERIAN PENINSULA"

Sort by: Order: Results:

Now showing items 1-5 of 5
  • Mammola, Stefano; Cardoso, Pedro; Ribera, Carles; Pavlek, Martina; Isaia, Marco (2018)
    We provide the first overview on spiders living in subterranean habitats in Europe, including the first European subterranean spider checklist. In Europe, there are 486 spider species known to dwell in caves and other subterranean habitats, distributed across 22 families. Despite a few species being able to colonize caves across the whole continent, approximately 90% of the species show a restricted distribution, occurring exclusively in one or two countries. From a biogeographic perspective, southern Europe emerges as the main hot spot of subterranean spider diversity, showing the highest richness of endemic species. Compared to other temperate regions of the world, some families appear to be well represented and other poorly represented (or lacking) in European subterranean habitats. Overall, it appears that the taxonomical knowledge on subterranean spiders in Europe is sufficient, but not evenly distributed. As this checklist represents a useful baseline for advances in this field, we point out specific areas of interest for future research.
  • Garcia-Alix, Antonio; Toney, Jaime L.; Jiménez-Moreno, Gonzalo; Pérez-Martinez, Carmen; Jiménez, Laura; Rodrigo-Gámiz, Marta; Anderson, R. Scott; Camuera, Jon; Jiménez-Espejo, Francisco J.; Peña-Angulo, Dhais; Ramos-Roman, Maria J. (2020)
    Alpine ecosystems of the southern Iberian Peninsula are among the most vulnerable and the first to respond to modern climate change in southwestern Europe. While major environmental shifts have occurred over the last similar to 1500 years in these alpine ecosystems, only changes in the recent centuries have led to abrupt environmental responses, but factors imposing the strongest stress have been unclear until now. To understand these environmental responses, this study, for the first time, has calibrated an algal lipid-derived temperature proxy (based on long-chain alkyl diols) to instrumental historical data extending alpine temperature reconstructions to 1500 years before present. These novel results highlight the enhanced effect of greenhouse gases on alpine temperatures during the last similar to 200 years and the long-term modulating role of solar forcing. This study also shows that the warming rate during the 20th century (similar to 0.18 degrees C per decade) was double that of the last stages of the Little Ice Age (similar to 0.09 degrees C per decade), even exceeding temperature trends of the high-altitude Alps during the 20th century. As a consequence, temperature exceeded the preindustrial record in the 1950s, and it has been one of the major forcing processes of the recent enhanced change in these alpine ecosystems from southern Iberia since then. Nevertheless, other factors reducing the snow and ice albedo (e.g., atmospheric deposition) may have influenced local glacier loss, since almost steady climate conditions predominated from the middle 19th century to the first decades of the 20th century.
  • Hodgetts, N. G.; Söderström, Lars; Blockeel, T. L.; Caspari, S.; Ignatov, M.S; Konstantinova, Nadezhda A.; Lockhart, N.; Papp, B.; Schröck, C.; Sim-Sim, M.; Bell, D.; Blom, H.; Bruggeman-Nannenga, M. A; Brugues, M; Enroth, Johannes; Garilleti, R.; Flatberg, K. I; Hedenäs, L; Holyoak, D. T; Hugonnot, V; Kariyawasam, I.; Köckinger, H.; Kucera, J.; Lara, F.; Porley, R. D. (2020)
    Introduction. Following on from work on the European bryophyte Red List, the taxonomically and nomenclaturally updated spreadsheets used for that project have been expanded into a new checklist for the bryophytes of Europe. Methods. A steering group of ten European bryologists was convened, and over the course of a year, the spreadsheets were compared with previous European checklists, and all changes noted. Recent literature was searched extensively. A taxonomic system was agreed, and the advice and expertise of many European bryologists sought. Key results. A new European checklist of bryophytes, comprising hornworts, liverworts and mosses, is presented. Fifteen new combinations are proposed. Conclusions. This checklist provides a snapshot of the current European bryophyte flora in 2019. It will already be out-of-date on publication, and further research, particularly molecular work, can be expected to result in many more changes over the next few years.
  • Armstrong, Edward; Hopcroft, Peter O.; Valdes, Paul J. (2019)
    Regional climate models (RCMs) are often assumed to be more skillful compared to lower-resolution general circulation models (GCM). However, RCMs are driven by input from coarser resolution GCMs, which may introduce biases. This study employs versions of the HadAMB3 GCM at three resolutions (>50 km) to investigate the added value of higher resolution using identically configured simulations of the preindustrial (PI), mid-Holocene, and Last Glacial Maximum. The RCM shows improved PI climatology compared to the coarse-resolution GCM and enhanced paleoanomalies in the jet stream and storm tracks. However, there is no apparent improvement when compared to proxy reconstructions. In the high-resolution GCM, accuracy in PI climate and atmospheric anomalies are enhanced despite its intermediate resolution. This indicates that synoptic and mesoscale features in a RCM are influenced by its low-resolution input, which impacts the simulated climatology. This challenges the paradigm that RCMs improve the representation of climate conditions and change.
  • Strandberg, G.; Kjellstrom, E.; Poska, A.; Wagner, S.; Gaillard, M.-J.; Trondman, A.-K.; Mauri, A.; Davis, B. A. S.; Kaplan, J. O.; Birks, H. J. B.; Bjune, A. E.; Fyfe, R.; Giesecke, T.; Kalnina, L.; Kangur, M.; van der Knaap, W. O.; Kokfelt, U.; Kunes, P.; Latalowa, M.; Marquer, L.; Mazier, F.; Nielsen, A. B.; Smith, B.; Seppa, H.; Sugita, S. (2014)