Browsing by Subject "ICE NUCLEATION"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Keshavarz, Fatemeh; Shcherbacheva, Anna; Kubecka, Jakub; Vehkamäki, Hanna; Kurten, Theo (2019)
    The effect of dust aerosols on accretion reactions of water, formaldehyde, and formic acid was studied in the conditions of earth's troposphere at the DLPNO-CCSD(T)/aug-cc-pVTZ//omega B97X-D/6-31++G** level of theory. A detailed analysis of the reaction mechanisms in the gas phase and on the surface of mineral dust, represented by mono- and trisilicic acid, revealed that mineral dust has the potential of decreasing reaction barrier heights. Specifically, at 0 K, mineral dust can lower the apparent energy barrier of the reaction of formaldehyde with formic acid to zero. However, when the entropic contributions to the reaction free energies were accounted for, mineral dust was found to selectively enhance the reaction of water with formaldehyde, while inhibiting the reaction of formaldehyde and formic acid, in the lower parts of the troposphere (with temperatures around 298 K). In the upper troposphere (with temperatures closer to 198 K), mineral dust catalyzes both reactions and also the reaction of methanol with formic acid. Despite the intrinsic potential of mineral dust, calculation of the catalytic enhancement parameter for a likely range of dust aerosol concentrations suggested that dust aerosols will not contribute to secondary organic aerosol formation via dimerization of closed-shell organic compounds. The main reason for this is the relatively low absolute concentratign of tropospheric dust aerosol and its inefficiency in increasing the effective reaction rate coefficients.
  • Melnikov, Vladimir; Gennadinik, Viktor; Kulmala, Markku; Lappalainen, Hanna K.; Petäjä, Tuukka; Zilitinkevich, Sergej (2018)
    The cryosphere of the Earth overlaps with the atmosphere, hydrosphere and lithosphere over vast areas with temperatures below 0 degrees C and pronounced H2O phase changes. In spite of its strong variability in space and time, the cryosphere plays the role of a global thermostat, keeping the thermal regime on the Earth within rather narrow limits, affording continuation of the conditions needed for the maintenance of life. Objects and processes related to cryosphere are very diverse, due to the following basic reasons: the anomalous thermodynamic and electromagnetic properties of H2O, the intermediate intensity of hydrogen bonds and the wide spread of cryogenic systems all over the Earth. However, these features attract insufficient attention from research communities. Cryology is usually understood as a descriptive discipline within physical geography, limited to glaciology and permafrost research. We emphasise its broad interdisciplinary landscape involving physical, chemical and biological phenomena related to the H2O phase transitions and various forms of ice. This paper aims to draw the attention of readers to the crucial importance of cryogenic anomalies, which make the Earth atmosphere and the entire Earth system very special, if not unique, objects in the universe.
  • Pathak, Harshad; Spah, Alexander; Kim, Kyung Hwan; Tsironi, Ifigeneia; Mariedahl, Daniel; Blanco, Maria; Huotari, Simo; Honkimäki, Veijo; Nilsson, Anders (2019)
    Wide angle x-ray scattering of supercooled water down to 234.8 K was studied using high energy x rays at the European Synchrotron Radiation Facility. The oxygen-oxygen pair distribution function (PDF) was calculated from the scattering pattern out to the 5th peak at an intermolecular distance, r approximate to 11 angstrom. We observe that the 4th peak and the 5th peak in the PDF increase in height upon supercooling. We also observe that the 4th peak position (r(4)) shifts to shorter distances upon supercooling consistent with previous studies, but we see a more rapid change at the lowest temperature. The running oxygen-oxygen coordination number is calculated for 5 different temperatures, and an isosbestic point at r(iso) = 3.31 +/- 0.05 angstrom was found corresponding to a coordination number of 4.39 +/- 0.15. The comparison of the PDF of the coldest water with that of amorphous ice shows distinct differences. We propose that there are 5-member pentamer rings in low density liquid-like structures giving rise to the sharp correlations at r approximate to 9 angstrom and r approximate to 11 angstrom.
  • Järvinen, Emma; Ignatius, Karoliina; Nichman, Leonid; Kristensen, Thomas B.; Fuchs, Claudia; Hoyle, Christopher R.; Hoeppel, Niko; Corbin, Joel C.; Craven, Jill; Duplissy, Jonathan; Ehrhart, Sebastian; El Haddad, Imad; Frege, Carla; Gordon, Hamish; Jokinen, Tuija; Kallinger, Peter; Kirkby, Jasper; Kiselev, Alexei; Naumann, Karl-Heinz; Petäjä, Tuukka; Pinterich, Tamara; Prevot, Andre S. H.; Saathoff, Harald; Schiebel, Thea; Sengupta, Kamalika; Simon, Mario; Slowik, Jay G.; Troestl, Jasmin; Virtanen, Annele; Vochezer, Paul; Vogt, Steffen; Wagner, Andrea C.; Wagner, Robert; Williamson, Christina; Winkler, Paul M.; Yan, Chao; Baltensperger, Urs; Donahue, Neil M.; Flagan, Rick C.; Gallagher, Martin; Hansel, Armin; Kulmala, Markku; Stratmann, Frank; Worsnop, Douglas R.; Moehler, Ottmar; Leisner, Thomas; Schnaiter, Martin (2016)
    Under certain conditions, secondary organic aerosol (SOA) particles can exist in the atmosphere in an amorphous solid or semi-solid state. To determine their relevance to processes such as ice nucleation or chemistry occurring within particles requires knowledge of the temperature and relative humidity (RH) range for SOA to exist in these states. In the Cosmics Leaving Outdoor Droplets (CLOUD) experiment at The European Organisation for Nuclear Research (CERN), we deployed a new in situ optical method to detect the viscous state of alpha-pinene SOA particles and measured their transition from the amorphous highly viscous state to states of lower viscosity. The method is based on the depolarising properties of laboratory-produced non-spherical SOA particles and their transformation to non-depolarising spherical particles at relative humidities near the deliquescence point. We found that particles formed and grown in the chamber developed an asymmetric shape through coagulation. A transition to a spherical shape was observed as the RH was increased to between 35aEuro-% at -10aEuro-A degrees C and 80aEuro-% at -38aEuro-A degrees C, confirming previous calculations of the viscosity-transition conditions. Consequently, alpha-pinene SOA particles exist in a viscous state over a wide range of ambient conditions, including the cirrus region of the free troposphere. This has implications for the physical, chemical, and ice-nucleation properties of SOA and SOA-coated particles in the atmosphere.