Sort by: Order: Results:

Now showing items 1-3 of 3
  • EURO-SKI Investigators (2018)
    Background Tyrosine kinase inhibitors (TKIs) have improved the survival of patients with chronic myeloid leukaemia. Many patients have deep molecular responses, a prerequisite for TKI therapy discontinuation. We aimed to define precise conditions for stopping treatment. Methods In this prospective, non-randomised trial, we enrolled patients with chronic myeloid leukaemia at 61 European centres in 11 countries. Eligible patients had chronic-phase chronic myeloid leukaemia, had received any TKI for at least 3 years (without treatment failure according to European LeukemiaNet [ELN] recommendations), and had a confirmed deep molecular response for at least 1 year. The primary endpoint was molecular relapse-free survival, defined by loss of major molecular response (MMR; >0.1% BCR-ABL1 on the International Scale) and assessed in all patients with at least one molecular result. Secondary endpoints were a prognostic analysis of factors affecting maintenance of MMR at 6 months in learning and validation samples and the cost impact of stopping TKI therapy. We considered loss of haematological response, progress to accelerated-phase chronic myeloid leukaemia, or blast crisis as serious adverse events. This study presents the results of the prespecified interim analysis, which was done after the 6-month molecular relapse-free survival status was known for 200 patients. The study is ongoing and is registered with, number NCT01596114. Findings Between May 30, 2012, and Dec 3, 2014, we assessed 868 patients with chronic myeloid leukaemia for eligibility, of whom 758 were enrolled. Median follow-up of the 755 patients evaluable for molecular response was 27 months (IQR 21-34). Molecular relapse-free survival for these patients was 61% (95% CI 57-64) at 6 months and 50% (46-54) at 24 months. Of these 755 patients, 371 (49%) lost MMR after TKI discontinuation, four (1%) died while in MMR for reasons unrelated to chronic myeloid leukaemia (myocardial infarction, lung cancer, renal cancer, and heart failure), and 13 (2%) restarted TKI therapy while in MMR. A further six (1%) patients died in chronic-phase chronic myeloid leukaemia after loss of MMR and re-initiation of TKI therapy for reasons unrelated to chronic myeloid leukaemia, and two ( Interpretation Patients with chronic myeloid leukaemia who have achieved deep molecular responses have good molecular relapse-free survival. Such patients should be considered for TKI discontinuation, particularly those who have been in deep molecular response for a long time. Stopping treatment could spare patients from treatment-induced side-effects and reduce health expenditure. Copyright (c) 2018 Elsevier Ltd. All rights reserved.
  • Hähnel, Tom; Baldow, Christoph; Guilhot, Joelle; Guilhot, Francois; Saussele, Susanne; Mustjoki, Satu; Jilg, Stefanie; Jost, Philipp J.; Dulucq, Stephanie; Mahon, Francois-Xavier; Roeder, Ingo; Fassoni, Artur C.; Glauche, Ingmar (2020)
    Recent clinicalfindings in patients with chronic myeloid leukemia (CML) suggest that the risk of molecular recurrence after stopping tyrosine kinase inhibitor (TKI) treatment substantially depends on an individual's leukemia-specific immune response. However, it is still not possible to prospectively identify patients that will remain in treatment-free remission (TFR). Here, we used an ordinary differential equation model for CML, which explicitly includes an antileukemic immunologic effect, and applied it to 21 patients with CML for whom BCR-ABL1/ABL1 time courses had been quantified before and after TKI cessation. Immunologic control was conceptually necessary to explain TFR as observed in about half of the patients. Fitting the model simulations to data, we identified patient-specific parameters and classified patients into three different groups according to their predicted immune system configuration ("immunologic landscapes"). While one class of patients required complete CML eradication to achieve TFR, other patients were able to control residual leukemia levels after treatment cessation. Amongthem were a third class of patients that maintained TFR only if an optimal balance between leukemia abundance and immunologic activation was achieved before treatment cessation. Model simulations further suggested that changes in the BCR-ABL1 dynamics resulting from TKI dose reduction convey information about the patient-specific immune system and allow prediction of outcome after treatment cessation. This inference of individual immunologic configurations based on treatment alterations can also be applied to other cancer types in which the endogenous immune system supports maintenance therapy, long-term disease control, or even cure. Significance: This mathematical modeling approach provides strong evidence that different immunologic configurations in patients with CML determine their response to therapy cessation and that dose reductions can help to prospectively infer different risk groups.