Browsing by Subject "IN-SILICO PREDICTION"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Legehar, Ashenafi; Xhaard, Henri; Ghemtio, Leo (2016)
    Background: The disposition of a pharmaceutical compound within an organism, i.e. its Absorption, Distribution, Metabolism, Excretion, Toxicity (ADMET) properties and adverse effects, critically affects late stage failure of drug candidates and has led to the withdrawal of approved drugs. Computational methods are effective approaches to reduce the number of safety issues by analyzing possible links between chemical structures and ADMET or adverse effects, but this is limited by the size, quality, and heterogeneity of the data available from individual sources. Thus, large, clean and integrated databases of approved drug data, associated with fast and efficient predictive tools are desirable early in the drug discovery process. Description: We have built a relational database (IDAAPM) to integrate available approved drug data such as drug approval information, ADMET and adverse effects, chemical structures and molecular descriptors, targets, bioactivity and related references. The database has been coupled with a searchable web interface and modern data analytics platform (KNIME) to allow data access, data transformation, initial analysis and further predictive modeling. Data were extracted from FDA resources and supplemented from other publicly available databases. Currently, the database contains information regarding about 19,226 FDA approval applications for 31,815 products (small molecules and bio-logics) with their approval history, 2505 active ingredients, together with as many ADMET properties, 1629 molecular structures, 2.5 million adverse effects and 36,963 experimental drug-target bioactivity data. Conclusion: IDAAPM is a unique resource that, in a single relational database, provides detailed information on FDA approved drugs including their ADMET properties and adverse effects, the corresponding targets with bioactivity data, coupled with a data analytics platform. It can be used to perform basic to complex drug-target ADMET or adverse effects analysis and predictive modeling. IDAAPM is freely accessible at http://idaapm.helsinki.fi and can be exploited through a KNIME workflow connected to the database.
  • Bunker, Alex; Rog, Tomasz (2020)
    In this review, we outline the growing role that molecular dynamics simulation is able to play as a design tool in drug delivery. We cover both the pharmaceutical and computational backgrounds, in a pedagogical fashion, as this review is designed to be equally accessible to pharmaceutical researchers interested in what this new computational tool is capable of and experts in molecular modeling who wish to pursue pharmaceutical applications as a context for their research. The field has become too broad for us to concisely describe all work that has been carried out; many comprehensive reviews on subtopics of this area are cited. We discuss the insight molecular dynamics modeling has provided in dissolution and solubility, however, the majority of the discussion is focused on nanomedicine: the development of nanoscale drug delivery vehicles. Here we focus on three areas where molecular dynamics modeling has had a particularly strong impact: (1) behavior in the bloodstream and protective polymer corona, (2) Drug loading and controlled release, and (3) Nanoparticle interaction with both model and biological membranes. We conclude with some thoughts on the role that molecular dynamics simulation can grow to play in the development of new drug delivery systems.
  • Wang, Yinyin; Jafari, Mohieddin; Tang, Yun; Tang, Jing (2019)
    Plant-derived nature products, known as herb formulas, have been commonly used in Traditional Chinese Medicine (TCM) for disease prevention and treatment. The herbs have been traditionally classified into different categories according to the TCM Organ systems known as Meridians. Despite the increasing knowledge on the active components of the herbs, the rationale of Meridian classification remains poorly understood. In this study, we took a machine learning approach to explore the classification of Meridian. We determined the molecule features for 646 herbs and their active components including structure-based fingerprints and ADME properties (absorption, distribution, metabolism and excretion), and found that the Meridian can be predicted by machine learning approaches with a top accuracy of 0.83. We also identified the top compound features that were important for the Meridian prediction. To the best of our knowledge, this is the first time that molecular properties of the herb compounds are associated with the TCM Meridians. Taken together, the machine learning approach may provide novel insights for the understanding of molecular evidence of Meridians in TCM. Author summary In East Asia, plant-derived natural products, known as herb formulas, have been commonly used as Traditional Chinese Medicine (TCM) for disease prevention and treatment. According to the theory of TCM, herbs can be classified as different Meridians according to the balance of Yin and Yang, which are commonly understood as metaphysical concepts. Therefore, the scientific rational of Meridian classification remains poorly understood. The aim of our study was to provide a computational means to understand the classification of Meridians. We showed that the Meridians of herbs can be predicted by the molecular and chemical features of the ingredient compounds, suggesting that the Meridians indeed are associated with the properties of the compounds. Our work provided a novel chemoinformatics approach which may lead to a more systematic strategy to identify the mechanisms of action and active compounds for TCM herbs.