Browsing by Subject "IN-VITRO"

Sort by: Order: Results:

Now showing items 1-20 of 204
  • Papaevgeniou, Nikoletta; Sakellari, Marianthi; Jha, Sweta; Tavernarakis, Nektarios; Holmberg, Carina I.; Gonos, Efstathios S.; Chondrogianni, Niki (2016)
    Aims: Proteasomes are constituents of the cellular proteolytic networks that maintain protein homeostasis through regulated proteolysis of normal and abnormal (in any way) proteins. Genetically mediated proteasome activation in multicellular organisms has been shown to promote longevity and to exert protein antiaggregation activity. In this study, we investigate whether compound-mediated proteasome activation is feasible in a multicellular organism and we dissect the effects of such approach in aging and Alzheimer's disease (AD) progression. Results: Feeding of wild-type Caenorhabditis elegans with 18 alpha-glycyrrhetinic acid (18 alpha-GA; a previously shown proteasome activator in cell culture) results in enhanced levels of proteasome activities that lead to a skinhead-1- and proteasomeactivation-dependent life span extension. The elevated proteasome function confers lower paralysis rates in various AD nematode models accompanied by decreased A beta deposits, thus ultimately decelerating the progression of AD phenotype. More importantly, similar positive results are also delivered when human and murine cells of nervous origin are subjected to 18 alpha-GA treatment. Innovation: This is the first report of the use of 18 alpha-GA, a diet-derived compound as prolongevity and antiaggregation factor in the context of a multicellular organism. Conclusion: Our results suggest that proteasome activation with downstream positive outcomes on aging and AD, an aggregation-related disease, is feasible in a nongenetic manipulation manner in a multicellular organism. Moreover, they unveil the need for identification of antiaging and antiamyloidogenic compounds among the nutrients found in our normal diet.
  • Lou, Yan-Ru; Toh, Tai Chong; Tee, Yee Han; Yu, Hanry (2017)
    25-Hydroxyvitamin D-3 [25(OH)D-3] has recently been found to be an active hormone. Its biological actions are demonstrated in various cell types. 25(OH)D-3 deficiency results in failure in bone formation and skeletal deformation. Here, we investigated the effect of 25(OH)D-3 on osteogenic differentiation of human mesenchymal stem cells (hMSCs). We also studied the effect of 1 alpha, 25-dihydroxyvitamin D-3[1 alpha,25-(OH)(2)D-3], a metabolite of 25(OH)D-3. One of the vitamin D responsive genes, 25(OH)D-3-24-hydroxylase (cytochrome P450 family 24 subfamily A member 1) mRNA expression is up-regulated by 25(OH)D-3 at 250-500 nM and by 1 alpha, 25-(OH)(2)D-3 at 1-10 nM. 25(OH)D-3 and 1 alpha, 25-(OH)(2)D-3 at a time-dependent manner alter cell morphology towards osteoblast-associated characteristics. The osteogenic markers, alkaline phosphatase, secreted phosphoprotein 1 (osteopontin), and bone gamma-carboxyglutamate protein (osteocalcin) are increased by 25(OH)D-3 and 1 alpha,25-(OH)(2)D-3 in a dose-dependent manner. Finally, mineralisation is significantly increased by 25(OH)D-3 but not by 1 alpha, 25-(OH)(2)D-3. Moreover, we found that hMSCs express very low level of 25(OH)D-3-1 alpha-hydroxylase (cytochrome P450 family 27 subfamily B member 1), and there is no detectable 1 alpha, 25-(OH)(2)D-3 product. Taken together, our findings provide evidence that 25(OH)D-3 at 250-500 nM can induce osteogenic differentiation and that 25(OH)D-3 has great potential for cell-based bone tissue engineering.
  • Beauchamp, Philippe; Jackson, Christopher B.; Ozhathil, Lijo Cherian; Agarkova, Irina; Galindo, Cristi L.; Sawyer, Douglas B.; Suter, Thomas M.; Zuppinger, Christian (2020)
    Purpose: Both cardiomyocytes and cardiac fibroblasts (CF) play essential roles in cardiac development, function, and remodeling. Properties of 3D co-cultures are incompletely understood. Hence, 3D co-culture of cardiomyocytes and CF was characterized, and selected features compared with single-type and 2D culture conditions.Methods: Human cardiomyocytes derived from induced-pluripotent stem cells (hiPSC-CMs) were obtained from Cellular Dynamics or Ncardia, and primary human cardiac fibroblasts from ScienCell. Cardiac spheroids were investigated using cryosections and whole-mount confocal microscopy, video motion analysis, scanning-, and transmission-electron microscopy (SEM, TEM), action potential recording, and quantitative PCR (qPCR).Results: Spheroids formed in hanging drops or in non-adhesive wells showed spontaneous contractions for at least 1 month with frequent media changes. SEM of mechanically opened spheroids revealed a dense inner structure and no signs of blebbing. TEM of co-culture spheroids at 1 month showed myofibrils, intercalated disc-like structures and mitochondria. Ultrastructural features were comparable to fetal human myocardium. We then assessed immunostained 2D cultures, cryosections of spheroids, and whole-mount preparations by confocal microscopy. CF in co-culture spheroids assumed a small size and shape similar to the situation in ventricular tissue. Spheroids made only of CF and cultured for 3 weeks showed no stress fibers and strongly reduced amounts of alpha smooth muscle actin compared to early spheroids and 2D cultures as shown by confocal microscopy, western blotting, and qPCR. The addition of CF to cardiac spheroids did not lead to arrhythmogenic effects as measured by sharp-electrode electrophysiology. Video motion analysis showed a faster spontaneous contraction rate in co-culture spheroids compared to pure hiPSC-CMs, but similar contraction amplitudes and kinetics. Spontaneous contraction rates were not dependent on spheroid size. Applying increasing pacing frequencies resulted in decreasing contraction amplitudes without positive staircase effect. Gene expression analysis of selected cytoskeleton and myofibrillar proteins showed more tissue-like expression patterns in co-culture spheroids than with cardiomyocytes alone or in 2D culture.Conclusion: We demonstrate that the use of 3D co-culture of hiPSC-CMs and CF is superior over 2D culture conditions for co-culture models and more closely mimicking the native state of the myocardium with relevance to drug development as well as for personalized medicine.
  • Luukkainen, Annika; Puan, Kia Joo; Yusof, Nurhashikin; Lee, Bernett; Tan, Kai Sen; Liu, Jing; Yan, Yan; Toppila-Salmi, Sanna; Renkonen, Risto; Chow, Vincent T.; Rotzschke, Olaf; Wang, De Yun (2018)
    Background: We established an in vitro co-culture model involving H3N2-infection of human nasal epithelium with peripheral blood mononuclear cells (PBMC) to investigate their cross-talk during early H3N2 infection. Methods: Nasal epithelium was differentiated from human nasal epithelial stem/progenitor cells and cultured wtih fresh human PBMC. PBMC and supernatants were harvested after 24 and 48 h of co-culture with H3N2-infected nasal epithelium. We used flow cytometry and Luminex to characterize PBMC subpopulations, their activation and secretion of cytokine and chemokines. Results: H3N2 infection of the nasal epithelium associated with significant increase in interferons (IFN-alpha, IFN-gamma, IL-29), pro-inflammatory cytokines (TNF-alpha, BDNF, IL-3) and viral-associated chemokines (IP-10, MCP-3, I-TAC, MIG), detectable already after 24 h. This translates into rapid activation of monocytes, NK-cells and innate T-cells (MAIT and gamma delta T cells), evident with CD38+ and/or CD69+ upregulation. Conclusions: This system may contribute to in vitro mechanistic immunological studies bridging systemic models and possibly enable the development of targeted immunomodulatory therapies.
  • Rajala, Kristiina; Lindroos, Bettina; Hussein, Samer M.; Lappalainen, Riikka S.; Pekkanen-Mattila, Mari; Inzunza, Jose; Rozell, Bjorn; Miettinen, Susanna; Narkilahti, Susanna; Kerkela, Erja; Aalto-Setälä, Katriina; Otonkoski, Timo; Suuronen, Riitta; Hovatta, Outi; Skottman, Heli (2010)
  • Chan, Keefe T.; Blake, Shaun; Zhu, Haoran; Kang, Jian; Trigos, Anna S.; Madhamshettiwar, Piyush B.; Diesch, Jeannine; Paavolainen, Lassi; Horvath, Peter; Hannan, Ross D.; George, Amee J.; Sanij, Elaine; Hannan, Katherine M.; Simpson, Kaylene J.; Pearson, Richard B. (2020)
    Exquisite regulation of PI3K/AKT/mTORC1 signaling is essential for homeostatic control of cell growth, proliferation, and survival. Aberrant activation of this signaling network is an early driver of many sporadic human cancers. Paradoxically, sustained hyperactivation of the PI3K/AKT/mTORC1 pathway in nontransformed cells results in cellular senescence, which is a tumor-suppressive mechanism that must be overcome to promote malignant transformation. While oncogene-induced senescence (OIS) driven by excessive RAS/ERK signaling has been well studied, little is known about the mechanisms underpinning the AKT-induced senescence (AIS) response. Here, we utilize a combination of transcriptome and metabolic profiling to identify key signatures required to maintain AIS. We also employ a whole protein-coding genome RNAi screen for AIS escape, validating a subset of novel mediators and demonstrating their preferential specificity for AIS as compared with OIS. As proof of concept of the potential to exploit the AIS network, we show that neurofibromin 1 (NF1) is upregulated during AIS and its ability to suppress RAS/ERK signaling facilitates AIS maintenance. Furthermore, depletion of NF1 enhances transformation of p53-mutant epithelial cells expressing activated AKT, while its overexpression blocks transformation by inducing a senescent-like phenotype. Together, our findings reveal novel mechanistic insights into the control of AIS and identify putative senescence regulators that can potentially be targeted, with implications for new therapeutic options to treat PI3K/AKT/mTORC1-driven cancers.
  • Jylhava, Juulia; Lyytikainen, Leo-Pekka; Kahonen, Mika; Hutri-Kahonen, Nina; Kettunen, Johannes; Viikari, Jorma; Raitakari, Olli T.; Lehtimaki, Terho; Hurme, Mikko (2012)
  • Salo, Tuula; Sutinen, Meeri; Apu, Ehsanul Hoque; Sundquist, Elias; Cervigne, Nilva K.; de Oliveira, Carine Ervolino; Akram, Saad Ullah; Ohlmeier, Steffen; Suomi, Fumi; Eklund, Lauri; Juusela, Pirjo; Astrom, Pirjo; Bitu, Carolina Cavalcante; Santala, Markku; Savolainen, Kalle; Korvala, Johanna; Paes Leme, Adriana Franco; Coletta, Ricardo D. (2015)
    Background: The composition of the matrix molecules is important in in vitro cell culture experiments of e.g. human cancer invasion and vessel formation. Currently, the mouse Engelbreth-Holm-Swarm (EHS) sarcoma -derived products, such as Matrigel (R), are the most commonly used tumor microenvironment (TME) mimicking matrices for experimental studies. However, since Matrigel (R) is non-human in origin, its molecular composition does not accurately simulate human TME. We have previously described a solid 3D organotypic myoma disc invasion assay, which is derived from human uterus benign leiomyoma tumor. Here, we describe the preparation and analyses of a processed, gelatinous leiomyoma matrix, named Myogel. Methods: A total protein extract, Myogel, was formulated from myoma. The protein contents of Myogel were characterized and its composition and properties compared with a commercial mouse Matrigel (R). Myogel was tested and compared to Matrigel (R) in human cell adhesion, migration, invasion, colony formation, spheroid culture and vessel formation experiments, as well as in a 3D hanging drop video image analysis. Results: We demonstrated that only 34 % of Myogel's molecular content was similar to Matrigel (R). All test results showed that Myogel was comparable with Matrigel (R), and when mixed with low-melting agarose (Myogel-LMA) it was superior to Matrigel (R) in in vitro Transwell (R) invasion and capillary formation assays. Conclusions: In conclusion, we have developed a novel Myogel TME matrix, which is recommended for in vitro human cell culture experiments since it closely mimics the human tumor microenvironment of solid cancers.
  • Palviainen, Mari J.; Junnikkala, Sami; Raekallio, Marja; Meri, Seppo; Vainio, Outi (2015)
  • Sinha, Snehadri; Narjus-Sterba, Matilda; Tuomainen, Katja; Kaur, Sippy; Seppänen-Kaijansinkko, Riitta; Salo, Tuula; Mannerström, Bettina; Al-Samadi, Ahmed (2020)
    Mesenchymal stem cells (MSCs) are commonly isolated from bone marrow and adipose tissue. Depending on the tissue of origin, MSCs have different characteristics and physiological effects. In various cancer studies, MSCs have been found to have either tumor-promoting or tumor-inhibiting action. This study investigated the effect of adipose tissue-MSCs (AT-MSCs) and bone marrow-MSCs (BM-MSCs) on global long interspersed nuclear element-1 (LINE-1) methylation, the expression level of microenvironment remodeling genes and cell proliferation, migration and invasion of oral tongue squamous cell carcinoma (OTSCC). Additionally, we studied the effect of human tongue squamous carcinoma (HSC-3)-conditioned media on LINE-1 methylation and the expression of microenvironment remodeling genes in AT-MSCs and BM-MSCs. Conditioned media from HSC-3 or MSCs did not affect LINE-1 methylation level in either cancer cells or MSCs, respectively. In HSC-3 cells, no effect of MSCs-conditioned media was detected on the expression ofICAM1, ITGA3orMMP1. On the other hand, HSC-3-conditioned media upregulatedICAM1andMMP1expression in both types of MSCs. Co-cultures of AT-MSCs with HSC-3 did not induce proliferation, migration or invasion of the cancer cells. In conclusion, AT-MSCs, unlike BM-MSCs, seem not to participate in oral cancer progression.
  • Cheng, Ruoyu; Liu, Lili; Xiang, Yi; Lu, Yong; Deng, Lianfu; Zhang, Hongbo; Santos, Hélder A.; Cui, Wenguo (2020)
    Liposome is one of the most commonly used drug delivery systems in the world, due to its excellent biocompatibility, satisfactory ability in controlling drug release, and passive targeting capability. However, some drawbacks limit the application of liposomes in clinical, such as problems in transporting, storing, and difficulties in maintaining the drug concentration in the local area. Scaffolds usually are used as implants to supply certain mechanical supporting to the defective area or utilized as diagnosis and imaging methods. But, in general, unmodified scaffolds show limited abilities in promoting tissue regeneration and treating diseases. Therefore, liposome-scaffold composite systems are designed to take advantages of both liposomes’ biocompatibility and scaffolds’ strength to provide a novel system that is more suitable for clinical applications. This review introduces and discusses different types of liposomes and scaffolds, and also the application of liposome-scaffold composite systems in different diseases, such as cancer, diabetes, skin-related diseases, infection and human immunodeficiency virus, and in tissue regeneration like bone, teeth, spinal cord and wound healing.
  • Huhtaniemi, Ilpo; Hovatta, Outi; La Marca, Antonio; Livera, Gabriel; Monniaux, Danielle; Persani, Luca; Heddar, Abdelkader; Jarzabek, Katarzyna; Laisk-Podar, Triin; Salumets, Andres; Tapanainen, Juha S.; Veitia, Reiner A.; Visser, Jenny A.; Wieacker, Peter; Wolczynski, Slawomir; Misrahi, Micheline (2018)
    Primary ovarian insufficiency (POI) affects similar to 1% of women before 40 years of age. The recent leap in genetic knowledge obtained by next generation sequencing (NGS) together with animal models has further elucidated its molecular pathogenesis, identifying novel genes/pathways. Mutations of > 60 genes emphasize high genetic heterogeneity. Genome-wide association studies have revealed a shared genetic background between POI and reproductive aging. NGS will provide a genetic diagnosis leading to genetic/therapeutic counseling: first, defects in meiosis or DNA repair genes may predispose to tumors; and second, specific gene defects may predict the risk of rapid loss of a persistent ovarian reserve, an important determinant in fertility preservation. Indeed, a recent innovative treatment of POI by in vitro activation of dormant follicles proved to be successful.
  • Saarimaki-Vire, Jonna; Balboa, Diego; Russell, Mark A.; Saarikettu, Juha; Kinnunen, Matias; Keskitalo, Salla; Malhi, Amrinder; Valensisi, Cristina; Andrus, Colin; Eurola, Solja; Grym, Heli; Ustinov, Jarkko; Wartiovaara, Kirmo; Hawkins, R. David; Silvennoinen, Olli; Varjosalo, Markku; Morgan, Noel G.; Otonkoski, Timo (2017)
    Activating germline mutations in STAT3 were recently identified as a cause of neonatal diabetes mellitus associated with beta-cell autoimmunity. We have investigated the effect of an activating mutation, STAT3(K392R,) on pancreatic development using induced pluripotent stem cells (iPSCs) derived from a patient with neonatal diabetes and pancreatic hypoplasia. Early pancreatic endoderm differentiated similarly from STAT3(K392R) and healthy-control cells, but in later stages, NEUROG3 expressionwas upregulated prematurely in STAT3(K392R) cells together with insulin (INS) and glucagon (GCG). RNA sequencing (RNA-seq) showed robust NEUROG3 downstream targets upregulation. STAT3 mutation correction with CRISPR/Cas9 reversed completely the disease phenotype. STAT3(K392R) -activating properties were not explained fully by altered DNA-binding affinity or increased phosphorylation. Instead, reporter assays demonstrated NEUROG3 promoter activation by STAT3 in pancreatic cells. Furthermore, proteomic and immunocytochemical analyses revealed increased nuclear translocation of STAT3(K392R). Collectively, our results demonstrate that the STAT3(K392R) mutation causes premature endocrine differentiation through direct induction of NEUROG3 expression.
  • Jawhari, Fatima Zahra; El Moussaoui, Abdelfattah; Bourhia, Mohammed; Imtara, Hamada; Mechchate, Hamza; Es-Safi, Imane; Ullah, Riaz; Ezzeldin, Essam; Mostafa, Gamal A.; Grafov, Andriy; Ibenmoussa, Samir; Bousta, Dalila; Bari, Amina (2020)
    Background: Anacyclus pyrethrum (A. pyrethrum) is a wild species belonging to the family Asteraceae, which is used in traditional medicines. Aim of the study: This work was undertaken to study the chemical composition, analgesic, anti-inflammatory, and wound healing properties of hydroalcoholic extracts of different parts (roots, seeds, leaves, and capitula) of A. pyrethrum. Material and Methods: The phytochemical analysis of the studied extracts was conducted by GC-MS. The analgesic activity was evaluated in mice using acetic acid and formaldehyde methods. The anti-inflammatory activity was tested using the inhibitory method of edema induced in rats. The healing activity of the hydroethanolic extracts was explored by excision and incision wound healing models in rats. Results: The phytochemical analysis of the studied plant extracts affirmed the presence of interesting compounds, including some newly detected elements, such as sarcosine, N-(trifluoroacetyl)-butyl ester, levulinic acid, malonic acid, palmitic acid, morphinan-6-One, 4,5.alpha.-epoxy-3-hydroxy-17-methyl, 2,4-undecadiene-8,10-diyne-N-tyramide, and isovaleric acid. The extracts of different parts (roots, seeds, leaves, and capitula) exhibited promising anti-inflammatory, analgesic, and wound healing effects, with percentages of inhibition up to 98%, 94%, and 100%, respectively. Conclusion: This study might contribute towards the well-being of society as it provides evidence on the potential analgesic, anti-inflammatory, and wound healing properties of A. pyrethrum.
  • Lindfors, Nina; Geurts, Jan; Drago, Lorenzo; Arts, J. J.; Juutilainen, Vesa; Hyvönen, Pekka; Suda, Arnold J.; Domenico, Aloj; Artiaco, Stefano; Alizadeh, Chingiz; Brychcy, Adrian; Bialecki, Jertzy; Romano, Carlo L. (Springer International Publishing AG, 2017)
    Advances in Experimental Medicine and Biology
    Osteomyelitis is an infectious process in bone that occasionally leads to bone destruction. Traditionally, the surgical treatment procedure is performed in combination with systemic and local antibiotics as a two-stage procedure that uses autograft or allograft bone for filling of the cavitary defect. Bioactive glass (BAG-S53P4) is a bone substitute with proven antibacterial and bone bonding properties. One hundred and sixteen patients who had verified chronic osteomyelitis was treated using BAG-S53P4 as part of the treatment. Most of the patients had previously undergone numerous procedures, sometimes for decades. A register of patient data obtained from 11 centers from Finland, Italy, the Netherlands, Germany, Azerbaijan and Poland was set-up and continuously maintained at Helsinki University Central Hospital. The location of the osteomyelitis was mainly in the tibia followed by the femur and then the calcaneus. The median age of the patients was 48 years (15-87). The patients were either treated according to a one-stage procedure without local antibiotics (85 %) or by a two-stage procedure using antibiotic beads in the first procedure (15 %). The minimum follow-up was 1 year (12-95 months, median 31). The cure rate was 104/116, the total success rate 90 % and most of the patients showed a rapid recovery. The study shows that (BAG-S53P4) can be used in a one-stage procedure in treatment of osteomyelitis with excellent results.
  • Hokynar, K.; Korhonen, Suvi; Norja, P.; Paavonen, J.; Puolakkainen, M. (2017)
    We studied whether antibody to two chlamydial proteins (TroA and HtrA) could be used as biomarkers of Chlamydia trachomatis infection. Methods: Recombinant proteins C. trachomatis TroA and HtrA were used as antigens in enzyme immunoassay (EIA). Both IgG and IgA antibody responses were studied. Results: IgG or IgA antibody to either protein was infrequently detected in sera from healthy blood donors or virgin girls. Patients attending the STI Clinic and patients with perihepatitis had often IgG antibody against TroA (25 and 50 % respectively) and HtrA (21 and 38 % respectively). Especially in sera from patients with chlamydial perihepatitis, the A(450nm) values with TroA were high (mean 1.591). A positive correlation between C. trachomatis MIF antibody and TroA (r = 0.7) as well as HtrA (r = 0.5) antibody was observed in sera from STI clinic patients and perihepatitis patients. Individuals with C. trachomatis infection and positive serology already when seeking medical attention had higher A(450nm) values for TroA (0.638) and HtrA (0.836) than patients with no marker of previous exposure or with no infection (0.208 and 0.234 respectively). Diagnosis of genital C. trachomatis infection is often NAAT-based, whereas serology has little value in testing for uncomplicated genital C. trachomatis infection. TroA and HtrA antibodies are potential biomarkers for evaluation of ascending and repeated C. trachomatis infection.
  • de Aquino, Iara Gonçalves; Bastos, Débora Campanella; Cuadra-Zelaya, Florence Juana Maria; Teixeira, Isadora Ferrari; Salo, Tuula; Coletta, Ricardo Della; Graner, Edgard (2020)
    Objective Fatty acid synthase (FASN) is overexpressed in several human cancers, including oral squamous cell carcinoma (OSCC). TVB-3166 is a recently described FASN inhibitor with antitumor effects and potential clinical relevance. The objective of this study was to evaluate the effects of TVB-3166 on OSCC cell lines. Materials and methods The OSCC cell line SCC-9 modified to express ZsGreen (ZsG) (SCC-9 ZsG) and its in vivo selected metastatic derivative LN-1A were used to evaluate anticancer properties of TVB-3166. Cell viability was determined using MTT assays and proliferation determined by cell counting in a Neubauer chamber. Cell death and cell cycle progression were analyzed by Annexin V-PE/7-ADD-PerCP labeling and PI staining, respectively. Cell migration was assayed by scratch assays and cell adhesion using myogel. Production of FASN, p-AKT, CPT1-α, and epithelial-mesenchymal transition (EMT) markers were examined by Western blotting. Results TVB-3166 significantly reduced cell viability and proliferation, promoted cell cycle arrest and apoptosis, and increased adhesion to myogel in both OSCC cell lines. Finally, the drug reduced SCC-9 ZsG migration. Conclusion Our results demonstrated that TVB-3166 has anticancer effects on both SCC-9 ZsG and its metastatic version LN-1A, which are worthy of investigation in preclinical models for OSCC.
  • Kinnunen, P. T. T.; Murtola, T. J.; Talala, K.; Taari, K.; Tammela, T. L. J.; Auvinen, A. (2019)
    PurposeAnticoagulants may reduce mortality of cancer patients, though the evidence remains controversial. We studied the association between different anticoagulants and cancer death.MethodsAll anticoagulant use during 1995-2015 was analyzed among 75,336 men in the Finnish Randomized Study of Screening for Prostate Cancer. Men with prevalent cancer were excluded. Multivariable Cox regression was performed to compare risk of death from any cancer and disease-specific death from 9 specific cancer types between (1) anticoagulant users overall and (2) warfarin users compared to anticoagulant non-users and (3) warfarin or (4) low-molecular-weight heparins (LMWH) compared to users of other anticoagulants. Medication use was analyzed as time-dependent variable to minimize immortal time bias. 1-, 2- and 3-year lag-time analyses were performed.ResultsDuring a median follow-up of 17.2years, a total of 27,233 men died of whom 8033 with cancer as the primary cause of death. In total, 32,628 men (43%) used anticoagulants. Any anticoagulant use was associated with an increased risk of cancer death (HR=2.50, 95% CI 2.37-2.64) compared to non-users. Risk was similar independent of the amount, duration, or intensity of use. The risk increase was observed both among warfarin and LMWH users, although not as strong in warfarin users. Additionally, cancer-specific risks of death were similar to overall cancer mortality in all anticoagulant categories.ConclusionOur study does not support reduced cancer mortality among anticoagulant users. Future studies on drug use and cancer mortality should be adjusted for anticoagulants as they are associated with significantly higher risk of cancer death.
  • Guo, Hui; Liu, Dongmei; Gao, Bin; Zhang, Xiaohui; You, Minli; Ren, Hui; Zhang, Hongbo; Almeida Santos, Helder; Xu, Feng (2016)
    Evodiamine (EVO) and rutaecarpine (RUT) are promising anti-tumor drug candidates. The evaluation of the anti-proliferative activity and cellular uptake of EVO and RUT in 3D multicellular spheroids of cancer cells would better recapitulate the native situation and thus better reflect an in vivo response to the treatment. Herein, we employed the 3D culture of MCF-7 and SMMC-7721 cells based on hanging drop method and evaluated the anti-proliferative activity and cellular uptake of EVO and RUT in 3D multicellular spheroids, and compared the results with those obtained from 2D monolayers. The drugs’ IC50 values were significantly increased from the range of 6.4–44.1 μM in 2D monolayers to 21.8–138.0 μM in 3D multicellular spheroids, which may be due to enhanced mass barrier and reduced drug penetration in 3D models. The fluorescence of EVO and RUT was measured via fluorescence spectroscopy and the cellular uptake of both drugs was characterized in 2D tumor models. The results showed that the cellular uptake concentrations of RUT increased with increasing drug concentrations. However, the EVO concentrations uptaken by the cells showed only a small change with increasing drug concentrations, which may be due to the different solubility of EVO and Rut in solvents. Overall, this study provided a new vision of the anti-tumor activity of EVO and RUT via 3D multicellular spheroids and cellular uptake through the fluorescence of compounds.