Browsing by Subject "INDOOR"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Odeh, Issam; Hussein, Tareq (2016)
    Knowledge of human activity patterns is needed in air pollution exposure and health risk assessment. However, human activity patterns have never been evaluated in the Eastern Mediterranean societies. Therefore, we investigated the activity pattern of 285 subjects (17-63 years) in Amman, Jordan during October to November, 2015. The subjects spent >80% of their time indoors during weekend days and >85% on workdays. They spent similar to 4.8% and similar to 5.7% in transportation during weekend days and workdays, respectively. Males had a different activity pattern than females on weekend days, but both genders had similar activity patterns on workdays. On workdays, males spent less time indoors than females. The activity pattern found in this study is a bit different than that for North Americans and Europeans, who spend more time indoors and in transit. The activity pattern found in this study was very different than that observed for Koreans, who spent about 59% and 67% indoors on workdays and weekend, respectively. The main outcomes of this survey can be utilized in human exposure studies. This study and the upcoming future studies have been encouraged and supported by the regional WHO office in Amman.
  • Huttunen, Kati; Wlodarczyk, Anna J.; Tirkkonen, Jenni; Mikkonen, Santtu; Täubel, Martin; Krop, Esmeralda; Jacobs, Jose; Pekkanen, Juha; Heederik, Dick; Zock, Jan-Paul; Hyvärinen, Anne; Hirvonen, Maija-Riitta; Adams, Rachel; Jones, Tim; Zimmermann, Ralf; BeruBe, Kelly (2019)
    Exposure to moisture-damaged indoor environments is associated with adverse respiratory health effects, but responsible factors remain unidentified. In order to explore possible mechanisms behind these effects, the oxidative capacity and hemolytic activity of settled dust samples (n = 25) collected from moisture-damaged and non-damaged schools in Spain, the Netherlands, and Finland were evaluated and matched against the microbial content of the sample. Oxidative capacity was determined with plasmid scission assay and hemolytic activity by assessing the damage to isolated human red blood cells. The microbial content of the samples was measured with quantitative PCR assays for selected microbial groups and by analyzing the cell wall markers ergosterol, muramic acid, endotoxins, and glucans. The moisture observations in the schools were associated with some of the microbial components in the dust, and microbial determinants grouped together increased the oxidative capacity. Oxidative capacity was also affected by particle concentration and country of origin. Two out of 14 studied dust samples from moisture-damaged schools demonstrated some hemolytic activity. The results indicate that the microbial component connected with moisture damage is associated with increased oxidative stress and that hemolysis should be studied further as one possible mechanism contributing to the adverse health effects of moisture-damaged buildings.
  • Hugg, Timo T.; Tuokila, Mirkka; Korkonen, Sanna; Weckström, Jan; Jaakkola, Maritta S.; Jaakkola, Jouni J. K. (2020)
    Introduction It is important to study potential differences in pollen concentrations between sampling heights because of diverse outdoor and indoor activity of humans (exposure) at different height levels in urban environments. Previous studies have investigated the effect of height on pollen concentrations based on just one or a few sampling points. We studied the effect of sampling height on grass pollen concentrations in several urban environments with different levels of urbanity. Methods This study was conducted in the Helsinki Metropolitan Area, Finland, in 2013 during the pollen season of grasses. Pollen grains were monitored in eight different points in the morning and afternoon. Rotorod-type samplers were attached on sampling poles at the heights of 1.5 meters and 4 meters. Results Grass pollen concentrations were on average higher at the height of 1.5 meters (Helsinki mean 5.24 grains / m3; Espoo mean 75.71 grains / m3) compared to the height of 4 meters (Helsinki mean 3.84 grains / m3; Espoo mean 37.42 grains / m3) with a difference of 1.40 grains / m3 (95% CI -0.21 to 3.01) in Helsinki, and 38.29 grains / m3 (7.52 to 69.07) in Espoo, although not always statistically significant. This was detected both in the morning and in the afternoon. However, in the most urban sites the levels were lower at 1.5 meters compared to 4 meters, whereas in the least urban sites the concentrations were higher at 1.5 meters. In linear regression models with interaction terms, the modifying effect of urbanity on concentration-height relation was statistically significant in both cities. The effect of urbanity on pollen concentrations at both heights was stronger in less urban Espoo. Conclusions The present study provides evidence that height affects the abundance and distribution of grass pollen in urban environments, but this effect depends on the level of urbanity.
  • Salin, Janne; Ohtonen, Pasi; Andersson, Maria A.; Syrjala, Hannu (2021)
    Background: The causes and pathophysiological mechanisms of building-related symptoms (BRS) remain open. Objective: We aimed to investigate the association between teachers' individual work-related symptoms and intrinsic in vitro toxicity in classrooms. This is a further analysis of a previously published dataset. Methods: Teachers from 15 Finnish schools in Helsinki responded to the symptom survey. The boar sperm motility inhibition assay, a sensitive indicator of mitochondrial dysfunction, was used to measure the toxicity of wiped dust and cultured microbial fallout samples collected from the teachers' classrooms. Results: 231 teachers whose classroom toxicity data had been collected responded to the questionnaire. Logistic regression analysis adjusted for age, gender, smoking, and atopy showed that classroom dust intrinsic toxicity was statistically significantly associated with the following 12 symptoms reported by teachers (adjusted ORs in parentheses): nose stuffiness (4.1), runny nose (6.9), hoarseness (6.4), globus sensation (9.0), throat mucus (7.6), throat itching (4.4), shortness of breath (12.2), dry cough (4.7), wet eyes (12.7), hypersensitivity to sound (7.9), difficulty falling asleep (7.6), and increased need for sleep (7.7). Toxicity of cultured microbes was found to be associated with nine symptoms (adjusted ORs in parentheses): headache (2.3), nose stuffiness (2.2), nose dryness (2.2), mouth dryness (2.8), hoarseness (2.2), sore throat (2.8), throat mucus (2.3), eye discharge (10.2), and increased need for sleep (3.5). Conclusions: The toxicity of classroom dust and airborne microbes in boar sperm motility inhibition assay significantly increased teachers' risk of work-related respiratory and ocular symptoms. Potential pathophysiological mechanisms of BRS are discussed.