Browsing by Subject "INDUCED TREE MORTALITY"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Salmon, Yann; Torres-Ruiz, Jose M.; Poyatos, Rafael; Martinez-Vilalta, Jordi; Meir, Patrick; Cochard, Herve; Mencuccini, Maurizio (2015)
    Understanding physiological processes involved in drought-induced mortality is important for predicting the future of forests and for modelling the carbon and water cycles. Recent research has highlighted the variable risks of carbon starvation and hydraulic failure in drought-exposed trees. However, little is known about the specific responses of leaves and supporting twigs, despite their critical role in balancing carbon acquisition and water loss. Comparing healthy (non-defoliated) and unhealthy (defoliated) Scots pine at the same site, we measured the physiological variables involved in regulating carbon and water resources. Defoliated trees showed different responses to summer drought compared with non-defoliated trees. Defoliated trees maintained gas exchange while non-defoliated trees reduced photosynthesis and transpiration during the drought period. At the branch scale, very few differences were observed in non-structural carbohydrate concentrations between health classes. However, defoliated trees tended to have lower water potentials and smaller hydraulic safety margins. While non-defoliated trees showed a typical response to drought for an isohydric species, the physiology appears to be driven in defoliated trees by the need to maintain carbon resources in twigs. These responses put defoliated trees at higher risk of branch hydraulic failure and help explain the interaction between carbon starvation and hydraulic failure in dying trees.
  • Junttila, Samuli; Sugano, Junko; Vastaranta, Mikko; Linnakoski, Riikka; Kaartinen, Harri; Kukko, Antero; Holopainen, Markus; Hyyppa, Hannu; Hyyppa, Juha (2018)
    Changing climate is increasing the amount and intensity of forest stress agents, such as drought, pest insects, and pathogens. Leaf water content, measured here in terms of equivalent water thickness (EWT), is an early indicator of tree stress that provides timely information about the health status of forests. Multispectral terrestrial laser scanning (MS-TLS) measures target geometry and reflectance simultaneously, providing spatially explicit reflectance information at several wavelengths. EWT and leaf internal structure affect leaf reflectance in the shortwave infrared region that can be used to predict EWT with MS-TLS. A second wavelength that is sensitive to leaf internal structure but not affected by EWT can be used to normalize leaf internal effects on the shortwave infrared region and improve the prediction of EWT. Here we investigated the relationship between EWT and laser intensity features using multisensor MS-TLS at 690, 905, and 1,550 nm wavelengths with both drought-treated and Endoconidiophora polonica inoculated Norway spruce seedlings to better understand how MS-TLS measurements can explain variation in EWT. In our study, a normalized ratio of two wavelengths at 905 and 1,550 nm and length of seedling explained 91% of the variation (R-2) in EWT as the respective prediction accuracy for EWT was 0.003 g/cm(2) in greenhouse conditions. The relation between EWT and the normalized ratio of 905 and 1,550 nm wavelengths did not seem sensitive to a decreased point density of the MS-TLS data. Based on our results, different EWTs in Norway spruce seedlings show different spectral responses when measured using MS-TLS. These results can be further used when developing EWT monitoring for improving forest health assessments.
  • Yu, Lei; Dong, Haojie; Lie, Zhijun; Hang, Zhanjiang; Korpelainen, Helena; Li, Chunyang (2020)
    Aims Drought and salinity are severe abiotic stress factors, which limit plant growth and productivity, particularly in desert regions. In this study, we employed two desert poplars, Populus euphratica Oliver and Populus pruinosa Schrenk seedlings, to compare their tolerance to drought, salinity and combined stress. Methods We investigated species-specific responses of P. euphratica and P. pruinosa in growth, photosynthetic capacity and pigment contents, nonstructural carbohydrate concentrations, Cl- allocation, osmotic regulation and the accumulation of reactive oxygen species (ROS) under drought, salinity and the combined stress. Important Findings Populus pruinosa exhibited greater growth inhibitory effects, photosynthesis decline, stomata! closure and ROS accumulation, and lower antioxidant enzyme activities and osmotic regulation compared with P. euphratica under drought, salinity and especially under their combined stress. On the other hand, salt-stressed P. euphratica plants restricted salt transportation from roots to leaves, and allocated more Cl- to coarse roots and less to leaves, whereas salt-stressed P. pruinosa allocated more Cl- to leaves. It was shown that there is species-specific variation in these two desert poplars, and P. pruinosa suffers greater negative effects compared with P. euphratica under drought, salinity and especially under the combined stress. Therefore, in ecological restoration and afforestation efforts, species-specific responses and tolerances of these two poplar species to drought and salinity should be considered under climate change with increasing drought and soil salinity developing.
  • Qian, Hui; Dong, Ai-Mei; Roitto, Marja; Xiang, Di-Ying; Zhang, Gang; Repo, Tapani; Wang, Ai-Fang (2021)
    Background and Objectives: More frequent and severe droughts are occurring due to climate change in northern China. In addition to intensity and duration, the timing of droughts may be decisive for its impacts on tree growth, mortality, and the whole forest ecosystem. The aim of this study was to compare the effect of drought occurring in the early- and mid-growing season on the growth and physiology of Mongolian pine (Pinus sylvestris var. mongolica Litv.) saplings. Materials and Methods: Four-year-old container saplings that were about to sprout were exposed to three treatments: (i) regular irrigation throughout the growing season (CTRL), (ii) no irrigation in the early growing season (weeks 1-5) followed by regular irrigation (EGD), (iii) no irrigation in the mid growing season (weeks 5-10), and regular irrigation in the early and late growing season (MGD). We measured the root and shoot growth, sapling mortality, and the physiological changes in the roots and needles periodically. Results: Drought in the mid growing season was more harmful than in the early growing season in terms of chlorophyll fluorescence, electrolyte leakage of needles, needle length, stem diameter increment, and sapling mortality. The high mortality in the mid growing season might be attributed to the joint effect of drought and high temperature. Drought in the early growing season decreased root growth, and the starch and soluble sugars in roots as much as the drought in the mid growing season. Abscisic acid concentration increased in fine roots, but decreased in old needles after drought. Conclusions: Special attention should be paid on forest sites susceptible to drought during afforestation in the face of ongoing climate change.