Browsing by Subject "INNATE IMMUNITY"

Sort by: Order: Results:

Now showing items 1-20 of 26
  • Haahtela, Tari (2019)
    Biodiversity hypothesis states that contact with natural environments enriches the human microbiome, promotes immune balance and protects from allergy and inflammatory disorders. We are protected by two nested layers of biodiversity, microbiota of the outer layer (soil, natural waters, plants, animals) and inner layer (gut, skin, airways). The latter inhabits our body and is colonized from the outer layer. Explosion of human populations along with cultural evolution is profoundly changing our environment and lifestyle. Adaptive immunoregulatory circuits and dynamic homeostasis are at stake in the newly emerged urban surroundings. In allergy, and chronic inflammatory disorders in general, exploring the determinants of immunotolerance is the key for prevention and more effective treatment. Loss of immunoprotective factors, derived from nature, is a new kind of health risk poorly acknowledged until recently. The paradigm change has been implemented in the Finnish allergy programme (2008-2018), which emphasized tolerance instead of avoidance. The first results are promising, as allergy burden has started to reduce. The rapidly urbanizing world is facing serious biodiversity loss with global warming, which are interconnected. Biodiversity hypothesis of health and disease has societal impact, for example, on city planning, food and energy production and nature conservation. It has also a message for individuals for health and well-being: take nature close, to touch, eat, breathe, experience and enjoy. Biodiverse natural environments are dependent on planetary health, which should be a priority also among health professionals.
  • Flatt, Justin W.; Butcher, Sarah J. (2019)
    Viruses are obligatory parasites that take advantage of intracellular niches to replicate. During infection, their genomes are carried in capsids across the membranes of host cells to sites of virion production by exploiting cellular behaviour and resources to guide and achieve all aspects of delivery and the downstream virus manufacturing process. Successful entry hinges on execution of a precisely tuned viral uncoating program where incoming capsids disassemble in consecutive steps to ensure that genomes are released at the right time, and in the right place for replication to occur. Each step of disassembly is cell-assisted, involving individual pathways that transmit signals to regulate discrete functions, but at the same time, these signalling pathways are organized into larger networks, which communicate back and forth in complex ways in response to the presence of virus. In this review, we consider the elegant strategy by which adenoviruses (AdVs) target and navigate cellular networks to initiate the production of progeny virions. There are many remarkable aspects about the AdV entry program; for example, the virus gains targeted control of a large well-defined local network neighbourhood by coupling several interacting processes (including endocytosis, autophagy and microtubule trafficking) around a collective reference state centred on the interactional topology and multifunctional nature of protein VI. Understanding the network targeting activity of protein VI, as well as other built-in mechanisms that allow AdV particles to be efficient at navigating the subsystems of the cell, can be used to improve viral vectors, but also has potential to be incorporated for use in entirely novel delivery systems.
  • Salmela, Heli; Stark, Taina; Stucki, Dimitri; Fuchs, Siiri; Freitak, Dalial; Dey, Alivia; Kent, Clement F.; Zayed, Amro; Dhaygude, Kishor; Hokkanen, Heikki; Sundstrom, Liselotte (2016)
    Protection against inflammation and oxidative stress is key in slowing down aging processes. The honey bee (Apis mellifera) shows flexible aging patterns linked to the social role of individual bees. One molecular factor associated with honey bee aging regulation is vitellogenin, a lipoglycophosphoprotein with anti-inflammatory and antioxidant properties. Recently, we identified three genes in Hymenopteran genomes arisen from ancient insect vitellogenin duplications, named vg-like-A, -B, and -C. The function of these vitellogenin homologs is unclear. We hypothesize that some of them might share gene-and protein-level similarities and a longevity-supporting role with vitellogenin. Here, we show how the structure and modifications of the vg-like genes and proteins have diverged from vitellogenin. Furthermore, all three vg-like genes show signs of positive selection, but the spatial location of the selected protein sites differ from those found in vitellogenin. We show that all these genes are expressed in both long-lived winter worker bees and in summer nurse bees with intermediate life expectancy, yet only vg-like-A shows elevated expression in winter bees as found in vitellogenin. Finally, we show that vg-like-A responds more strongly than vitellogenin to inflammatory and oxidative conditions in summer nurse bees, and that also vg-like-B responds to oxidative stress. We associate vg-like-A and, to lesser extent, vg-like-B to the antiaging roles of vitellogenin, but that vg-like-C probably is involved in some other function. Our analysis indicates that an ancient duplication event facilitated the adaptive and functional divergence of vitellogenin and its paralogs in the honey bee.
  • Lankelma, Jacqueline M.; Belzer, Clara; Hoogendijk, Arie J.; de Vos, Alex F.; de Vos, Willem M.; van der Poll, Tom; Wiersinga, W. Joost (2016)
    OBJECTIVES: Broad-spectrum antibiotics disrupt the intestinal microbiota. The microbiota is essential for physiological processes, such as the development of the gut immune system. Recent murine data suggest that the intestinal microbiota also modulates systemic innate immune responses; however, evidence in humans is lacking. METHODS: Twelve healthy young men were given oral broad-spectrum antibiotics (ciprofloxacin 500 mg bid, vancomycin 500 mg tid and metronidazole 500 mg tid) for 7 days. At baseline, 1 day, and 6 weeks after antibiotics, blood and feces were sampled. Whole blood and isolated mononuclear cells were stimulated with selected Toll-like receptor agonists and heat-killed bacteria. Microbiota diversity and composition was determined using bacterial 16S rDNA sequencing. RESULTS: One day after the antibiotic course, microbial diversity was significantly lower compared with baseline. After antibiotic therapy, systemic mononuclear cells produced lower levels of tumor necrosis factor (TNF)-alpha after ex vivo stimulation with lipopolysaccharide (LPS). This diminished capacity to produce TNF-alpha was restored 6 weeks after cessation of antibiotic therapy. In whole blood, a reduced capacity to release interleukin (IL)-1 beta and IL-6 was observed after LPS stimulation. Antibiotic treatment did not impact on differential leukocyte counts, phagocytosis, and cell surface markers of neutrophils and monocytes. CONCLUSIONS: In this proof-of-principle study of healthy subjects, microbiota disruption by broad-spectrum antibiotics is reversibly associated with decreased systemic cellular responsiveness towards LPS. The implications of these findings in a clinical setting remain to be determined.
  • Wirthmueller, Lennart; Asai, Shuta; Rallapalli, Ghanasyam; Sklenar, Jan; Fabro, Georgina; Kim, Dae Sung; Lintermann, Ruth; Jaspers, Pinja; Wrzaczek, Michael; Kangasjärvi, Jaakko; MacLean, Daniel; Menke, Frank L. H.; Banfield, Mark J.; Jones, Jonathan D. G. (2018)
    The oomycete pathogen Hyaloperonospora arabidopsidis (Hpa) causes downy mildew disease on Arabidopsis. To colonize its host, Hpa translocates effector proteins that suppress plant immunity into infected host cells. Here, we investigate the relevance of the interaction between one of these effectors, HaRxL106, and Arabidopsis RADICAL-INDUCED CELL DEATH1 (RCD1). We use pathogen infection assays as well as molecular and biochemical analyses to test the hypothesis that HaRxL106 manipulates RCD1 to attenuate transcriptional activation of defense genes. We report that HaRxL106 suppresses transcriptional activation of salicylic acid (SA)-induced defense genes and alters plant growth responses to light. HaRxL106-mediated suppression of immunity is abolished in RCD1 loss-of-function mutants. We report that RCD1-type proteins are phosphorylated, and we identified Mut9-like kinases (MLKs), which function as phosphoregulatory nodes at the level of photoreceptors, as RCD1-interacting proteins. An mlk1,3,4 triple mutant exhibits stronger SA-induced defense marker gene expression compared with wild-type plants, suggesting that MLKs also affect transcriptional regulation of SA signaling. Based on the combined evidence, we hypothesize that nuclear RCD1/MLK complexes act as signaling nodes that integrate information from environmental cues and pathogen sensors, and that the Arabidopsis downy mildew pathogen targets RCD1 to prevent activation of plant immunity.
  • Kale, Liga; Nakurte, Ilva; Jalakas, Pirko; Kunga-Jegere, Laura; Brosche, Mikael; Rostoks, Nils (2019)
    Arabidopsis thaliana cyclic nucleotide-gated ion channel gene 4 (AtCNGC4) loss-of-function mutant dnd2 exhibits elevated accumulation of salicylic acid (SA), dwarfed morphology, reduced hypersensitive response (HR), altered disease resistance and spontaneous lesions on plant leaves. An orthologous barley mutant, nec1, has been reported to over-accumulate indole-3-acetic acid (IAA) and to exhibit changes in stomatal regulation in response to exogenous auxin. Here we show that the Arabidopsis dnd2 over-accumulates both IAA and abscisic acid (ABA) and displays related phenotypic and physiological changes, such as, reduced stomatal size, higher stomatal density and stomatal index. dnd2 showed increased salt tolerance in root growth assay and significantly reduced stomatal conductance, while maintaining near wt reaction in stomatal conductance upon external application of ABA, and probably consequently increased drought stress tolerance. Introduction of both sid2-1 and fmo1 into dnd2 background resulting in removal of SA did not alter stomatal conductance. Hence, the closed stomata of dnd2 is probably a result of increased ABA levels and not increased SA levels. The triple dnd2sid2abi1-1 mutant exhibited intermediate stomatal conductance compared to dnd2 and abil-1 (ABA insensitive, open stomata), while the response to external ABA was as in abi1-1 suggesting that reduced stomatal conductance in dnd2 is not due to impaired ABA signaling. In conclusion, Arabidopsis dnd2 mutant exhibited ABA overaccumulation and stomatal phenotypes, which may contribute to the observed improvement in drought stress resistance. Thus, Arabidopsis dnd2 mutant may serve as a model for studying crosstalk between biotic and abiotic stress and hormonal response in plants.
  • Roslund, Marja; Puhakka, Riikka; Grönroos, Mira; Nurminen, Noora; Oikarinen, Sami; Gazali, Ahmad M.; Cinek, Ondrej; Kramna, Lenka; Siter, Nathan; Vari, Heli; Soininen, Laura; Parajuli, Anirudra; Rajaniemi, Juho; Kinnunen, Tuure; Laitinen, Olli H.; Hyöty, Heikki; Sinkkonen, Aki; The ADELE Research Group (2020)
    As the incidence of immune-mediated diseases has increased rapidly in developed societies, there is an unmet need for novel prophylactic practices to fight against these maladies. This study is the first human intervention trial in which urban environmental biodiversity was manipulated to examine its effects on the commensal microbiome and immunoregulation in children. We analyzed changes in the skin and gut microbiota and blood immune markers of children during a 28-day biodiversity intervention. Children in standard urban and nature-oriented daycare centers were analyzed for comparison. The intervention diversified both the environmental and skin Gammaproteobacterial communities, which, in turn, were associated with increases in plasma TGF-beta 1 levels and the proportion of regulatory T cells. The plasma IL-10:IL-17A ratio increased among intervention children during the trial. Our findings suggest that biodiversity intervention enhances immunoregulatory pathways and provide an incentive for future prophylactic approaches to reduce the risk of immune-mediated diseases in urban societies.
  • Ahonen, Marko T.; Diaconu, Iulia; Pesonen, Sari; Kanerva, Anna; Baumann, Marc; Parviainen, Suvi T.; Spiller, Brad; Cerullo, Vincenzo; Hemminki, Akseli (2010)
  • Koskela, Sirpa; Mäkelä, Satu; Strandin, Tomas; Vaheri, Antti; Outinen, Tuula; Joutsi-Korhonen, Lotta; Pörsti, Ilkka; Mustonen, Jukka; Laine, Outi (2021)
    Puumala hantavirus (PUUV) causes a hemorrhagic fever with renal syndrome (HFRS), also called nephropathia epidemica (NE), which is mainly endemic in Europe and Russia. The clinical features include a low platelet count, altered coagulation, endothelial activation, and acute kidney injury (AKI). Multiple connections between coagulation pathways and inflammatory mediators, as well as complement and kallikrein-kinin systems, have been reported. The bleeding symptoms are usually mild. PUUV-infected patients also have an increased risk for disseminated intravascular coagulation (DIC) and thrombosis.
  • Douillard, Francois P.; Mora, Diego; Eijlander, Robyn T.; Wels, Michiel; de Vos, Willem M. (2018)
    Several probiotic-marketed formulations available for the consumers contain live lactic acid bacteria and/or bifidobacteria. The multispecies product commercialized as VSL#3 has been used for treating various gastro-intestinal disorders. However, like many other products, the bacterial strains present in VSL#3 have only been characterized to a limited extent and their efficacy as well as their predicted mode of action remain unclear, preventing further applications or comparative studies. In this work, the genomes of all eight bacterial strains present in VSL#3 were sequenced and characterized, to advance insights into the possible mode of action of this product and also to serve as a basis for future work and trials. Phylogenetic and genomic data analysis allowed us to identify the 7 species present in the VSL#3 product as specified by the manufacturer. The 8 strains present belong to the species Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus helveticus, Bifidobacterium breve and B. animalis subsp. lactis (two distinct strains). Comparative genomics revealed that the draft genomes of the S. thermophilus and L. helveticus strains were predicted to encode most of the defence systems such as restriction modification and CRISPR-Cas systems. Genes associated with a variety of potential probiotic functions were also identified. Thus, in the three Bifidobacterium spp., gene clusters were predicted to encode tight adherence pili, known to promote bacteria-host interaction and intestinal barrier integrity, and to impact host cell development. Various repertoires of putative signalling proteins were predicted to be encoded by the genomes of the Lactobacillus spp., i.e. surface layer proteins, LPXTG-containing proteins, or sortase-dependent pili that may interact with the intestinal mucosa and dendritic cells. Taken altogether, the individual genomic characterization of the strains present in the VSL#3 product confirmed the product specifications, determined its coding capacity as well as identified potential probiotic functions.
  • Korhonen, Laura; Seiskari, Tapio; Lehtonen, Jussi; Puustinen, Leena; Surcel, Heljä-Marja; Haapala, Anna-Maija; Niemelä, Onni; Virtanen, Suvi M.; Honkanen, Hanna; Karjalainen, Mira; Ilonen, Jorma; Veijola, Riitta; Knip, Mikael; Lönnrot, Maria; Hyöty, Heikki (2018)
    Background: Prenatal environment has been shown to influence child's risk of atopic diseases. Laboratory-confirmed data about the role of maternal infections during pregnancy is scarce. Objective: The aim of this study was to determine the associations between serologically confirmed maternal infections during pregnancy and atopic disease in the offspring. Methods: This was a nested case-control study within a prospective birth cohort study. Altogether 202 atopic case children and 333 matched non-atopic control children were included. Atopic outcome was defined as having an atopic disease and IgE sensitization by the age of 5 years. We analysed serologically acute enterovirus (EV), influenza virus A (IAV) and Mycoplasma pneumoniae (M. pneumoniae) infections during pregnancy, and mother's seropositivity against human cytomegalovirus (CMV) and Helicobacter pylori. Results: Maternal EV infection during pregnancy was inversely associated with atopic outcome in the offspring (odds ratio 0.43; 95% confidence interval: 0.23-0.80, P = 0.008). Acute IAV or M. pneumoniae infections or seropositivity against CMV or Helicobacter pylori were not associated with the atopic outcome. Conclusions and Clinical Relevance: Our results suggest that maternal EV infections during pregnancy are inversely associated with atopic disease in the offspring. Our finding provides further support to the previous studies suggesting an important role of the in utero environment in the development of atopic diseases.
  • PASTURE Study Grp; Hose, Alexander J.; Pagani, Giulia; Karvonen, Anne M.; Kirjavainen, Pirkka V.; Pekkanen, Juha; Ege, Markus J. (2021)
    A higher diversity of food items introduced in the first year of life has been inversely related to subsequent development of asthma. In the current analysis, we applied latent class analysis (LCA) to systematically assess feeding patterns and to relate them to asthma risk at school age. PASTURE (N=1133) and LUKAS2 (N=228) are prospective birth cohort studies designed to evaluate protective and risk factors for atopic diseases, including dietary patterns. Feeding practices were reported by parents in monthly diaries between the 4(th) and 12(th) month of life. For 17 common food items parents indicated frequency of feeding during the last 4 weeks in 4 categories. The resulting 153 ordinal variables were entered in a LCA. The intestinal microbiome was assessed at the age of 12 months by 16S rRNA sequencing. Data on feeding practice with at least one reported time point was available in 1042 of the 1133 recruited children. Best LCA model fit was achieved by the 4-class solution. One class showed an elevated risk of asthma at age 6 as compared to the other classes (adjusted odds ratio (aOR): 8.47, 95% CI 2.52-28.56, p = 0.001) and was characterized by daily meat consumption and rare consumption of milk and yoghurt. A refined LCA restricted to meat, milk, and yoghurt confirmed the asthma risk effect of a particular class in PASTURE and independently in LUKAS2, which we thus termed unbalanced meat consumption (UMC). The effect of UMC was particularly strong for non-atopic asthma and asthma irrespectively of early bronchitis (aOR: 17.0, 95% CI 5.2-56.1, p < 0.001). UMC fostered growth of iron scavenging bacteria such as Acinetobacter (aOR: 1.28, 95% CI 1.00-1.63, p = 0.048), which was also related to asthma (aOR: 1.55, 95% CI 1.18-2.03, p = 0.001). When reconstructing bacterial metabolic pathways from 16S rRNA sequencing data, biosynthesis of siderophore group nonribosomal peptides emerged as top hit (aOR: 1.58, 95% CI 1.13-2.19, p = 0.007). By a data-driven approach we found a pattern of overly meat consumption at the expense of other protein sources to confer risk of asthma. Microbiome analysis of fecal samples pointed towards overgrowth of iron-dependent bacteria and bacterial iron metabolism as a potential explanation.
  • Frei, Remo; Ferstl, Ruth; Roduit, Caroline; Ziegler, Mario; Schiavi, Elisa; Barcik, Weronika; Rodriguez-Perez, Noelia; Wirz, Oliver F.; Wawrzyniak, Marcin; Pugin, Benoit; Nehrbass, Dirk; Jutel, Marek; Smolinska, Sylwia; Konieczna, Patrycja; Bieli, Christian; Loeliger, Susanne; Waser, Marco; Pershagen, Goeran; Riedler, Josef; Depner, Martin; Schaub, Bianca; Genuneit, Jon; Renz, Harald; Pekkanen, Juha; Karvonen, Anne M.; Dalphin, Jean-Charles; van Hage, Marianne; Doekes, Gert; Akdis, Mubeccel; Braun-Fahrlander, Charlotte; Akdis, Cezmi A.; von Mutius, Erika; O'Mahony, Liam; Lauener, Roger P.; Prevention Allergy Risk Factors Se; Protection Against Allergy Study R (2018)
    Background: Childhood exposure to a farm environment has been shown to protect against the development of inflammatory diseases, such as allergy, asthma, and inflammatory bowel disease. Objective: We sought to investigate whether both exposure to microbes and exposure to structures of nonmicrobial origin, such as the sialic acid N-glycolylneuraminic acid (Neu5Gc), might play a significant role. Methods: Exposure to Neu5Gc was evaluated by quantifying anti-Neu5Gc antibody levels in sera of children enrolled in 2 farm studies: the Prevention of Allergy Risk factors for Sensitization in Children Related to Farming and Anthroposophic Lifestyle (PARSIFAL) study (n = 299) and the Protection Against Allergy Study in Rural Environments (PASTURE) birth cohort (cord blood [n = 836], 1 year [n = 734], 4.5 years [n = 700], and 6 years [n = 728]), and we associated them with asthma and wheeze. The effect of Neu5Gc was examined in murine airway inflammation and colitis models, and the role of Neu5Gc in regulating immune activation was assessed based on helper T-cell and regulatory T-cell activation in mice. Results: In children anti-Neu5Gc IgG levels correlated positively with living on a farm and increased peripheral blood forkhead box protein 3 expression and correlated inversely with wheezing and asthma in nonatopic subjects. Exposure to Neu5Gc in mice resulted in reduced airway hyperresponsiveness and inflammatory cell recruitment to the lung. Furthermore, Neu5Gc administration to mice reduced the severity of a colitis model. Mechanistically, we found that Neu5Gc exposure reduced IL-17(+) T-cell numbers and supported differentiation of regulatory T cells. Conclusions: In addition to microbial exposure, increased exposure to non microbial-derived Neu5Gc might contribute to the protective effects associated with the farm environment.
  • Woestmann, Luisa; Kvist, Jouni Antero; Saastamoinen, Marjo Anna Kaarina (2017)
    Flight represents a key trait in most insects, being energetically extremely demanding, yet often necessary for foraging and reproduction. Additionally, dispersal via flight is especially important for species living in fragmented landscapes. Even though, based on life-history theory, a negative relationship may be expected between flight and immunity, a number of previous studies have indicated flight to induce an increased immune response. In this study, we assessed whether induced immunity (i.e. immune gene expression) in response to 15-min forced flight treatment impacts individual survival of bacterial infection in the Glanville fritillary butterfly (Melitaea cinxia). We were able to confirm previous findings of flight-induced immune gene expression, but still observed substantially stronger effects on both gene expression levels and life span due to bacterial infection compared to flight treatment. Even though gene expression levels of some immunity-related genes were elevated due to flight, these individuals did not show increased survival of bacterial infection, indicating that flight-induced immune activation does not completely protect them from the negative effects of bacterial infection. Finally, an interaction between flight and immune treatment indicated a potential trade-off: flight treatment increased immune gene expression in naive individuals only, whereas in infected individuals no increase in immune gene expression was induced by flight. Our results suggest that the up-regulation of immune genes upon flight is based on a general stress response rather than reflecting an adaptive response to cope with potential infections during flight or in new habitats.
  • Meri, Seppo; Haapasalo, Karita (2020)
    Complement-mediated inflammation or dysregulation in lipid metabolism are associated with the pathogenesis of several diseases. These include age-related macular degeneration (AMD), C3 glomerulonephritis (C3GN), dense deposit disease (DDD), atherosclerosis, and Alzheimer's disease (AD). In all these diseases, formation of characteristic lipid-rich deposits is evident. Here, we will discuss molecular mechanisms whereby dysfunction of complement, and especially of its key regulator factor H, could be involved in lipid accumulation and related inflammation. The genetic associations to factor H polymorphisms, the role of factor H in the resolution of inflammation in lipid-rich deposits, modification of macrophage functions, and complement-mediated clearance of apoptotic and damaged cells indicate that the function of factor H is crucial in limiting inflammation in these diseases.
  • Anastasina, Maria; Le May, Nicolas; Bugai, Andrii; Fu, Yu; Soderholm, Sandra; Gaelings, Lana; Ohman, Tiina; Tynell, Janne; Kyttanen, Suvi; Barboric, Matjaz; Nyman, Tuula A.; Matikainen, Sampsa; Julkunen, Ilkka; Butcher, Sarah J.; Egly, Jean-Marc; Kainov, Denis E. (2016)
    Influenza NS1 protein is an important virulence factor that is capable of binding double-stranded (ds) RNA and inhibiting dsRNA-mediated host innate immune responses. Here we show that NS1 can also bind cellular dsDNA. This interaction prevents loading of transcriptional machinery to the DNA, thereby attenuating IAV-mediated expression of antiviral genes. Thus, we identified a previously undescribed strategy, by which RNA virus inhibits cellular transcription to escape antiviral response and secure its replication. (C) 2016 Elsevier B.V. All rights reserved.
  • Roslund, Marja; Puhakka, Riikka; Nurminen, Noora; Oikarinen, Sami; Siter, Nathan; Grönroos, Mira; Cinek, Ondrej; Kramna, Lenka; Jumpponen, Ari; Laitinen, Olli; Rajaniemi, Juho; Hyöty, Heikki; Sinkkonen, Aki (2021)
    Background: In modern urban environments children have a high incidence of inflammatory disorders, including allergies, asthma, and type 1 diabetes. The underlying cause of these disorders, according to the biodiversity hypothesis, is an imbalance in immune regulation caused by a weak interaction with environmental microbes. In this 2-year study, we analyzed bacterial community shifts in the soil surface in day-care centers and commensal bacteria inhabiting the mouth, skin, and gut of children. We compared two different day-care environments: standard urban day-care centers and intervention day-care centers. Yards in the latter were amended with biodiverse forest floor vegetation and sod at the beginning of the study. Results: Intervention caused a long-standing increase in the relative abundance of nonpathogenic environmental mycobacteria in the surface soils. Treatment-specific shifts became evident in the community composition of Gammaproteobacteria, Negativicutes, and Bacilli, which jointly accounted for almost 40 and 50% of the taxa on the intervention day-care children's skin and in saliva, respectively. In the year-one skin swabs, richness of Alpha-, Beta-, and Gammaproteobacteria was higher, and the relative abundance of potentially pathogenic bacteria, including Haemophilus parainfluenzae, Streptococcus sp., and Veillonella sp., was lower among children in intervention day-care centers compared with children in standard day-care centers. In the gut, the relative abundance of Clostridium sensu stricto decreased, particularly among the intervention children. Conclusions: This study shows that a 2-year biodiversity intervention shapes human commensal microbiota, including taxa that have been associated with immune regulation. Results indicate that intervention enriched commensal microbiota and suppressed the potentially pathogenic bacteria on the skin. We recommend future studies that expand intervention strategies to immune response and eventually the incidence of immune-mediated diseases.
  • Rinne, Maiju Kaarina; Mätlik, Kert; Ahonen, Tiina Johanna; Vedovi, Fabio; Zappia, Giovanni; Moreira, Vânia M.; Yli-Kauhaluoma, Jari Tapani; Leino, Sakari; Salminen, Outi Susanna; Kalso, Eija Anneli; Airavaara, Mikko Tuomas; Xhaard, Henri Guillaume Michel (2020)
    Toll-like receptor 4 (TLR4) recognizes various endogenous and microbial ligands and is an essential part in the innate immune system. TLR4 signaling initiates transcription factor NF-κB and production of proinflammatory cytokines. TLR4 contributes to the development or progression of various diseases including stroke, neuropathic pain, multiple sclerosis, rheumatoid arthritis and cancer, and better therapeutics are currently sought for these conditions. In this study, a library of 140 000 compounds was virtually screened and a resulting hit-list of 1000 compounds was tested using a cellular reporter system. The topoisomerase II inhibitor mitoxantrone and its analogues pixantrone and mitoxantrone (2-hydroxyethyl)piperazine were identified as inhibitors of TLR4 and NF-κB activation. Mitoxantrone was shown to bind directly to the TLR4, and pixantrone and mitoxantrone (2- hydroxyethyl)piperazine were shown to inhibit the production of proinflammatory cytokines such as tumor necrosis factor alpha (TNFα) in primary microglia. The inhibitory effect on NF-κB activation or on TNFα pro-duction was not mediated through cytotoxity at ≤ 1 μM concentration for pixantrone and mitoxantrone (2- hydroxyethyl)piperazine treated cells, as assessed by ATP counts. This study thus identifies a new mechanism of action for mitoxantrone, pixantrone, and mitoxantrone (2-hydroxyethyl)piperazine through the TLR4.
  • Korhonen, Kati; Unkila-Kallio, Leila; Alfthan, Henrik; Hämäläinen, Esa; Tiitinen, Aila; Mikkola, Tomi; Tapanainen, Juha; Savolainen-Peltonen, Hanna (2020)
    Purpose Pentraxin 3 (PTX3) is a locally secreted, quicker responsive pro-inflammatory protein than C-reactive protein (CRP). We evaluated the value of PTX3 in the prediction of ovarian hyperstimulation syndrome (OHSS), a severe complication of in vitro fertilization (IVF). Methods This two-year prospective follow-up study included 27 women with uncomplicated IVF-cycles (IVF group) and 31 patients diagnosed with moderate or severe early OHSS (OHSS group). PTX3 was analysed from follicular fluid (FF) and serial blood samples with enzyme-linked immunoassay and CRP with particle-enhanced immunoturbidimetric assay. The value of PTX3 and CRP in detecting OHSS was examined with receiver operating characteristic (ROC) curve analysis and expressed as the area under the curve (AUC). Results The circulating PTX3 level peaked at two days after oocyte pick-up (OPU2), and in the OHSS group the level was 1.9 times higher (P = 0.006) than in the IVF group. However, in ROC curve analysis PTX3 (AUC 0.79, best cut off 1.1 mu g/L) was not superior to CRP (AUC 0.87; best cut off 9.5 mg/L) in predicting early OHSS. In the IVF group, the FF-PTX3 concentration was 15-20 times higher than in the plasma. PTX3 level at OPU2 correlated with the number of punctured follicles (r = 0.56, n = 22, P = 0.006). Triggering with human chorionic gonadotrophin or early pregnancy had no effect on PTX3 level. Conclusion The elevated PTX3 concentration in OHSS at OPU2, when freeze-all embryos strategy is still possible to consider, indicates that PTX3 level could provide additional benefit in the risk assessment for early OHSS.
  • Savola, P.; Kelkka, T.; Rajala, H. L.; Kuuliala, A.; Kuuliala, K.; Eldfors, S.; Ellonen, P.; Lagstrom, S.; Lepisto, M.; Hannunen, T.; Andersson, E. I.; Khajuria, R. K.; Jaatinen, T.; Koivuniemi, R.; Repo, H.; Saarela, J.; Porkka, K.; Leirisalo-Repo, M.; Mustjoki, S. (2017)
    Somatic mutations contribute to tumorigenesis. Although these mutations occur in all proliferating cells, their accumulation under non-malignant conditions, such as in autoimmune disorders, has not been investigated. Here, we show that patients with newly diagnosed rheumatoid arthritis have expanded CD8(+) T-cell clones; in 20% (5/25) of patients CD8(+) T cells, but not CD4(+) T cells, harbour somatic mutations. In healthy controls (n = 20), only one mutation is identified in the CD8(+) T-cell pool. Mutations exist exclusively in the expanded CD8(+) effector-memory subset, persist during follow-up, and are predicted to change protein functions. Some of the mutated genes (SLAMF6, IRF1) have previously been associated with autoimmunity. RNA sequencing of mutation-harbouring cells shows signatures corresponding to cell proliferation. Our data provide evidence of accumulation of somatic mutations in expanded CD8(+) T cells, which may have pathogenic significance for RA and other autoimmune diseases.