Browsing by Subject "INTEGRIN"

Sort by: Order: Results:

Now showing items 1-7 of 7
  • Narva, Elisa; Stubb, Aki; Guzman, Camilo; Blomqvist, Matias; Balboa, Diego; Lerche, Martina; Saari, Markku; Otonkoski, Timo; Ivaska, Johanna (2017)
    Cell-type-specific functions and identity are tightly regulated by interactions between the cell cytoskeleton and the extracellular matrix (ECM). Human pluripotent stem cells (hPSCs) have ultimate differentiation capacity and exceptionally low-strength ECM contact, yet the organization and function of adhesion sites and associated actin cytoskeleton remain poorly defined. We imaged hPSCs at the cell-ECM interface with total internal reflection fluorescence microscopy and discovered that adhesions at the colony edge were exceptionally large and connected by thick ventral stress fibers. The actin fence encircling the colony was found to exert extensive Rho-ROCK-myosin-dependent mechanical stress to enforce colony morphology, compaction, and pluripotency and to define mitotic spindle orientation. Remarkably, differentiation altered adhesion organization and signaling characterized by a switch from ventral to dorsal stress fibers, reduced mechanical stress, and increased integrin activity and cell-ECM adhesion strength. Thus, pluripotency appears to be linked to unique colony organization and adhesion structure.
  • Slik, Khadija; Blom, Sami; Turkki, Riku; Välimäki, Katja; Kurki, Samu; Mustonen, Harri; Haglund, Caj; Carpén, Olli; Kallioniemi, Olli; Korkeila, Eija; Sundström, Jari; Pellinen, Teijo (2019)
    Tumour budding predicts survival of stage II colorectal cancer (CRC) and has been suggested to be associated with epithelial-to-mesenchymal transition (EMT). However, the underlying molecular changes of tumour budding remain poorly understood. Here, we performed multiplex immunohistochemistry (mIHC) to phenotypically profile tumours using known EMT-associated markers: E-cadherin (adherence junctions), integrin beta 4 (ITGB4; basement membrane), ZO-1 (tight junctions), and pan-cytokeratin. A subpopulation of patients showed high ITGB4 expression in tumour buds, and this coincided with a switch of ITGB4 localisation from the basal membrane of intact epithelium to the cytoplasm of budding cells. Digital image analysis demonstrated that tumour budding with high ITGB4 expression in tissue microarray (TMA) cores correlated with tumour budding assessed from haematoxylin and eosin (H&E) whole sections and independently predicted poor disease-specific survival in two independent stage II CRC cohorts (hazard ratio [HR] = 4.50 (95% confidence interval [CI] = 1.50-13.5), n = 232; HR = 3.52 (95% CI = 1.30-9.53), n = 72). Furthermore, digitally obtained ITGB4-high bud count in random TMA cores was better associated with survival outcome than visual tumour bud count in corresponding H&E-stained samples. In summary, the mIHC-based phenotypic profiling of human tumour tissue shows strong potential for the molecular characterisation of tumour biology and for the discovery of novel prognostic biomarkers.
  • McDonald, Craig; Morrison, Vicky L.; McGloin, David; Fagerholm, Susanna Carola (2022)
    Integrins in effector T cells are crucial for cell adhesion and play a central role in cell-mediated immunity. Leukocyte adhesion deficiency (LAD) type III, a genetic condition that can cause death in early childhood, highlights the importance of integrin/kindlin interactions for immune system function. A TTT/AAA mutation in the cytoplasmic domain of the beta 2 integrin significantly reduces kindlin-3 binding to the beta 2 tail, abolishes leukocyte adhesion to intercellular adhesion molecule 1 (ICAM-1), and decreases T cell trafficking in vivo. However, how kindlin-3 affects integrin function in T cells remains incompletely understood. We present an examination of LFA-1/ICAM-1 bonds in both wild-type effector T cells and those with a kindlin-3 binding site mutation. Adhesion assays show that effector T cells carrying the kindlin-3 binding site mutation display significantly reduced adhesion to the integrin ligand ICAM-1. Using optical trapping, combined with back focal plane interferometry, we measured a bond rupture force of 17.85 +/- 0.63 pN at a force loading rate of 30.21 +/- 4.35 pN/s, for single integrins expressed on wild-type cells. Interestingly, a significant drop in rupture force of bonds was found for TTT/AAA-mutant cells, with a measured rupture force of 10.08 +/- 0.88pN at the same pulling rate. Therefore, kindlin-3 binding to the cytoplasmic tail of the beta 2-tail directly affects catch bond formation and bond strength of integrin-ligand bonds. As a consequence of this reduced binding, CD8+ T cell activation in vitro is also significantly reduced.
  • Seppälä, Jonne; Tossavainen, Helena; Rodic, Nebojsa; Permi, Perttu; Pentikäinen, Ulla; Ylänne, Jari (2015)
    Filamins (FLNs) are large, multidomain actin cross-linking proteins with diverse functions. Besides regulating the actin cytoskeleton, they serve as important links between the extracellular matrix and the cytoskeleton by binding cell surface receptors, functioning as scaffolds for signaling proteins, and binding several other cytoskeletal proteins that regulate cell adhesion dynamics. Structurally, FLNs are formed of an amino terminal actin-binding domain followed by 24 immunoglobulin-like domains (IgFLNs). Recent studies have demonstrated that myosin-mediated contractile forces can reveal hidden protein binding sites in the domain pairs IgFLNa18-19 and 20-21, enabling FLNs to transduce mechanical signals in cells. The atomic structures of these mechanosensor domain pairs in the resting state are known, as well as the structures of individual IgFLN21 with ligand peptides. However, little experimental data is available on how interacting protein binding deforms the domain pair structures. Here, using small-angle x-ray scattering-based modelling, x-ray crystallography, and NMR, we show that the adaptor protein migfilin-derived peptide-bound structure of IgFLNa20-21 is flexible and adopts distinctive conformations depending on the presence or absence of the interacting peptide. The conformational changes reported here may be common for all peptides and may play a role in the mechanosensor function of the site.
  • Rahikainen, Rolle; Öhman, Tiina; Turkki, Paula; Varjosalo, Markku; Hytönen, Vesa P. (2019)
    Talin protein is one of the key components in integrin-mediated adhesion complexes. Talins transmit mechanical forces between beta-integrin and actin, and regulate adhesion complex composition and signaling through the force-regulated unfolding of talin rod domain. Using modified talin proteins, we demonstrate that these functions contribute to different cellular processes and can be dissected. The transmission of mechanical forces regulates adhesion complex composition and phosphotyrosine signaling even in the absence of the mechanically regulated talin rod subdomains. However, the presence of the rod subdomains and their mechanical activation are required for the reinforcement of the adhesion complex, cell polarization and migration. Talin rod domain unfolding was also found to be essential for the generation of cellular signaling anisotropy, since both insufficient and excess activity of the rod domain severely inhibited cell polarization. Utilizing proteomics tools, we identified adhesome components that are recruited and activated either in a talin rod-dependent manner or independently of the rod subdomains. This study clarifies the division of roles between the force-regulated unfolding of a talin protein (talin 1) and its function as a physical linker between integrins and the cytoskeleton.
  • Hakanpaa, Laura; Kiss, Elina A.; Jacquemet, Guillaume; Miinalainen, Ilkka; Lerche, Martina; Guzman, Camilo; Mervaala, Eero; Eklund, Lauri; Ivaska, Johanna; Saharinen, Pipsa (2018)
    Loss of endothelial integrity promotes capillary leakage in numerous diseases, including sepsis, but there are no effective therapies for preserving endothelial barrier function. Angiopoietin-2 (ANGPT2) is a context-dependent regulator of vascular leakage that signals via both endothelial TEK receptor tyrosine kinase (TIE2) and integrins. Here, we show that antibodies against beta 1-integrin decrease LPS-induced vascular leakage in murine endotoxemia, as either a preventative or an intervention therapy. beta 1-integrin inhibiting antibodies bound to the vascular endotheliumin vivo improved the integrity of endothelial cell-cell junctions and protected mice from endotoxemia-associated cardiac failure, without affecting endothelial inflammation, serum proinflammatory cytokine levels, or TIE receptor signaling. Moreover, conditional deletion of a single allele of endothelial beta 1-integrin protected mice from LPS-induced vascular leakage. In endothelial mono-layers, the inflammatory agents thrombin, lipopolysaccharide (LPS), and IL-1 beta decreased junctional vascular endothelial (VE)-cadherin and induced actin stress fibers via beta 1- and alpha 5-integrins and ANGPT2. Additionally, beta 1-integrin inhibiting antibodies prevented inflammation-induced endothelial cell contractility and monolayer permeability. Mechanistically, the inflammatory agents stimulated ANGPT2-dependent translocation of alpha 5 beta 1-integrin into tensin-1-positive fibrillar adhesions, which destabilized the endothelial monolayer. Thus, beta 1-integrin promotes endothelial barrier disruption during inflammation, and targeting beta 1-integrin signaling could serve as a novel means of blocking pathological vascular leak.
  • Klaas, Mariliis; Mäemets-Allas, Kristina; Heinmäe, Elizabeth; Lagus, Heli; Cardenas-Leon, Claudia Griselda; Arak, Terje; Eller, Mart; Kingo, Külli; Kankuri, Esko; Jaks, Viljar (2021)
    Thrombospondin-4 (THBS4) is a non-structural extracellular matrix molecule associated with tissue regeneration and a variety of pathological processes characterized by increased cell proliferation and migration. However, the mechanisms of how THBS4 regulates cell behavior as well as the pathways contributing to its effects have remained largely unexplored. In the present study we investigated the role of THBS4 in skin regeneration both in vitro and in vivo. We found that THBS4 expression was upregulated in the dermal compartment of healing skin wounds in humans as well as in mice. Application of recombinant THBS4 protein promoted cutaneous wound healing in mice and selectively stimulated migration of primary fibroblasts as well as proliferation of keratinocytes in vitro. By using a combined proteotranscriptomic pathway analysis approach we discovered that beta-catenin acted as a hub for THBS4-dependent cell signaling and likely plays a key role in promoting its downstream effects. Our results suggest that THBS4 is an important contributor to wound healing and its incorporation into novel wound healing therapies may be a promising strategy for treatment of cutaneous wounds.