Browsing by Subject "INTERACTS"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Donner, Iikki; Katainen, Riku; Kaasinen, Eevi; Aavikko, Mervi; Sipilä, Lauri J.; Pukkala, Eero; Aaltonen, Lauri A. (2019)
    Angioimmunoblastic T-cell lymphoma (AITL) is a subtype of peripheral T-cell lymphoma with a poor prognosis: the 5-year survival rate is approximately 30%. Somatic driver mutations have been found in TET2, IDH2, DNMT3A, RHOA, FYN, PLCG1, and CD28, whereas germline susceptibility to AITL has to our knowledge not been studied. The homogenous Finnish population is well suited for studies on genetic predisposition. Here, we performed an exome-wide rare variant analysis in 23 AITL patients. No germline mutations were found in the driver genes, implying that they are not frequently involved in genetic AITL predisposition. Potentially pathogenic variants present in at least two patients and showing significant (p
  • Rämö, Olli; Kumar, Darshan; Gucciardo, Erika; Joensuu, Merja; Saarekas, Maiju; Vihinen, Helena; Belevich, Ilya; Smolander, Olli-Pekka; Qian, Kui; Auvinen, Petri; Jokitalo, Eija (2016)
    Reticulons (RTNs) are a large family of membrane associated proteins with various functions. NOGO-A/RTN4A has a well-known function in limiting neurite outgrowth and restricting the plasticity of the mammalian central nervous system. On the other hand, Reticulon 4 proteins were shown to be involved in forming and maintaining endoplasmic reticulum (ER) tubules. Using comparative transcriptome analysis and qPCR, we show here that NOGO-B/RTN4B and NOGO-A/RTN4A are simultaneously expressed in cultured epithelial, fibroblast and neuronal cells. Electron tomography combined with immunolabelling reveal that both isoforms localize preferably to curved membranes on ER tubules and sheet edges. Morphological analysis of cells with manipulated levels of NOGO-B/RTN4B revealed that it is required for maintenance of normal ER shape; over-expression changes the sheet/tubule balance strongly towards tubules and causes the deformation of the cell shape while depletion of the protein induces formation of large peripheral ER sheets.
  • Karki, Sudeep; Shkumatov, Alexander V.; Bae, Sungwon; Kim, Hyeonho; Ko, Jaewon; Kajander, Tommi (2020)
    Synaptic adhesion molecules play an important role in the formation, maintenance and refinement of neuronal connectivity. Recently, several leucine rich repeat (LRR) domain containing neuronal adhesion molecules have been characterized including netrin G-ligands, SLITRKs and the synaptic adhesion-like molecules (SALMs). Dysregulation of these adhesion molecules have been genetically and functionally linked to various neurological disorders. Here we investigated the molecular structure and mechanism of ligand interactions for the postsynaptic SALM3 adhesion protein with its presynaptic ligand, receptor protein tyrosine phosphatase sigma (PTP sigma). We solved the crystal structure of the dimerized LRR domain of SALM3, revealing the conserved structural features and mechanism of dimerization. Furthermore, we determined the complex structure of SALM3 with PTP sigma using small angle X-ray scattering, revealing a 2:2 complex similar to that observed for SALM5. Solution studies unraveled additional flexibility for the complex structure, but validated the uniform mode of action for SALM3 and SALM5 to promote synapse formation. The relevance of the key interface residues was further confirmed by mutational analysis with cellular binding assays and artificial synapse formation assays. Collectively, our results suggest that SALM3 dimerization is a pre-requisite for the SALM3-PTP sigma complex to exert synaptogenic activity.