Browsing by Subject "INTERGALACTIC MEDIUM"

Sort by: Order: Results:

Now showing items 1-5 of 5
  • Ge, Chong; Liu, Ruo-Yu; Sun, Ming; Yu, Heng; Rudnick, Lawrence; Eilek, Jean; Owen, Frazer; Dasadia, Sarthak; Rossetti, Mariachiara; Markevitch, Maxim; Clarke, Tracy E.; Jones, Thomas W.; Ghizzardi, Simona; Venturi, Tiziana; Finoguenov, Alexis; Eckert, Dominique (2020)
    We present the results of deep Chandra and XMM-Newton observations of a complex merging galaxy cluster Abell 2256 (A2256) that hosts a spectacular radio relic (RR). The temperature and metallicity maps show clear evidence of a merger between the western subcluster (SC) and the primary cluster (PC). We detect five X-ray surface brightness edges. Three of them near the cluster centre are cold fronts (CFs): CF1 is associated with the infalling SC; CF2 is located in the east of the PC; and CF3 is located to the west of the PC core. The other two edges at cluster outskirts are shock fronts (SFs): SF1 near the RR in the NW has Mach numbers derived from the temperature and the density jumps, respectively, of M-T = 1.62 +/- 0.12 and M-rho = 1.23 +/- 0.06; SF2 in the SE has M-T = 1.54 +/- 0.05 and M-rho = 1.16 +/- 0.13. In the region of the RR, there is no evidence for the correlation between X-ray and radio substructures, from which we estimate an upper limit for the inverse-Compton emission, and therefore set a lower limit on the magnetic field (similar to 450 kpc from PC centre) of B > 1.0 mu G for a single power-law electron spectrum or B > 0.4 mu G for a broken power-law electron spectrum. We propose a merger scenario including a PC, an SC, and a group. Our merger scenario accounts for the X-ray edges, diffuse radio features, and galaxy kinematics, as well as projection effects.
  • Lavinto, Mikko; Räsänen, Syksy (2015)
    We consider a Swiss Cheese model with a random arrangement of LemaitreTolman-Bondi holes in Lambda CDM cheese. We study two kinds of holes with radius r(b) = 50 h(-1) Mpc, with either an underdense or an overdense centre, called the open and closed case, respectively. We calculate the effect of the holes on the temperature, angular diameter distance and, for the first time in Swiss Cheese models, shear of the CMB. We quantify the systematic shift of the mean and the statistical scatter, and calculate the power spectra. In the open case, the temperature power spectrum is three orders of magnitude below the linear ISW spectrum. It is sensitive to the details of the hole, in the closed case the amplitude is two orders of magnitude smaller. In contrast, the power spectra of the distance and shear are more robust, and agree with perturbation theory and previous Swiss Cheese results. We do not find a statistically significant mean shift in the sky average of the angular diameter distance, and obtain the 95% limit vertical bar Delta D-A/(D) over bar (A)vertical bar less than or similar to 10(-4). We consider the argument that areas of spherical surfaces are nearly unaffected by perturbations, which is often invoked in light propagation calculations. The closed case is consistent with this at 1 sigma, whereas in the open case the probability is only 1.4%.
  • Ahoranta, Jussi; Nevalainen, Jukka; Wijers, Nastasha; Finoguenov, Alexis; Bonamente, Massilimiano; Tempel, Elmo; Tilton, Evan; Schaye, Joop; Kaastra, Jelle; Gozaliasl, Ghassem (2020)
    Aims. We explore the high spectral resolution X-ray data towards the quasar 3C 273 to search for signals of hot (similar to 10^(6-7) K) X-ray-absorbing gas co-located with two established intergalactic far-ultraviolet (FUV) OVI absorbers. Methods. We analyze the soft X-ray band grating data of all XMM-Newton and Chandra instruments to search for the hot phase absorption lines at the FUV predicted redshifts. The viability of potential line detections is examined by adopting the constraints of a physically justified absorption model. The WHIM hypothesis is investigated with a complementary 3D galaxy distribution analysis and by detailed comparison of the measurement results to the WHIM properties in the EAGLE cosmological, hydrodynamical simulation. Results. At one of the examined FUV redshifts, 0.09017 +/- 0.00003, we measured signals of two hot ion species, ;VIII and x202f;IX, with a 3.9 sigma combined significance level. While the absorption signal is only marginally detected in individual co-added spectra, considering the line features in all instruments collectively and assuming collisional equilibrium for absorbing gas, we were able to constrain the temperature (kT = 0.26 +/- 0.03 keV) and the column density cm(-2)) of the absorber. Thermal analysis indicates that FUV and X-ray absorption relate to different phases, with estimated temperatures, T-FUV & x2004;3 x 10(5), and, T(X - ray)x2004;3 x 10(6) K. These temperatures match the EAGLE predictions for WHIM at the FUV/X-ray measured N-ion-ranges. We detected a large scale galactic filament crossing the sight-line at the redshift of the absorption, linking the absorption to this structure. Conclusions. This study provides observational insights into co-existing warm and hot gas within a WHIM filament and estimates the ratio of the hot and warm phases. Because the hot phase is thermally distinct from the OVI gas, the estimated baryon content of the absorber is increased, conveying the promise of X-ray follow-up studies of FUV detected WHIM in refining the picture of the missing baryons.
  • de Gasperin, F.; Rudnick, L.; Finoguenov, A.; Wittor, D.; Akamatsu, H.; Brueggen, M.; Chibueze, J. O.; Clarke, T. E.; Cotton, W.; Cuciti, V.; Dominguez-Fernandez, P.; Knowles, K.; O'Sullivan, S. P.; Sebokolodi, L. (2022)
    Context. During their lifetimes, galaxy clusters grow through the accretion of matter from the filaments of the large-scale structure and from mergers with other clusters. These mergers release a large amount of energy into the intracluster medium (ICM) through merger shocks and turbulence. These phenomena are associated with the formation of radio sources known as radio relics and radio halos, respectively. Radio relics and halos are unique proxies for studying the complex properties of these dynamically active regions of clusters and the microphysics of the ICM more generally. Aims. Abell 3667 is a spectacular example of a merging system that hosts a large pair of radio relics. Due to its proximity (0.0553) and large mass, the system enables the study of these sources to a uniquely high level of detail. However, being located at Dec = -56.8 degrees, the cluster could only be observed with a limited number of radio facilities. Methods. We observed Abell 3667 with MeerKAT as part of the MeerKAT Galaxy Cluster Legacy Survey. We used these data to study the large-scale emission of the cluster, including its polarisation and spectral properties. The results were then compared with simulations. Results. We present the most detailed view of the radio relic system in Abell 3667 to date, with a resolution reaching 3 kpc. The relics are filled with a network of filaments with different spectral and polarisation properties that are likely associated with multiple regions of particle acceleration and local enhancements of the magnetic field. Conversely, the magnetic field in the space between filaments has strengths close to what would be expected in unperturbed regions at the same cluster-centric distance. Comparisons with magnetohydrodynamic cosmological and Lagrangian simulations support the idea of filaments as multiple acceleration sites. Our observations also confirm the presence of an elongated radio halo, developed in the wake of the bullet-like sub-cluster that merged from the south-east. Finally, we associate the process of magnetic draping with a thin polarised radio source surrounding the remnant of the bullet's cool core. Conclusions. Our observations have unveiled the complexity of the interplay between the thermal and non-thermal components in the most active regions of a merging cluster. Both the intricate internal structure of radio relics and the direct detection of magnetic draping around the merging bullet are powerful examples of the non-trivial magnetic properties of the ICM. Thanks to its sensitivity to polarised radiation, MeerKAT will be transformational in the study of these complex phenomena.
  • Nevalainen, J.; Tempel, E.; Ahoranta, J.; Liivamägi, L. J.; Bonamente, M.; Tilton, E.; Kaastra, J.; Fang, T.; Heinämäki, P.; Saar, E.; Finoguenov, A. (2019)
    The cosmological missing baryons at z <1 most likely hide in the hot (T greater than or similar to 10(5.5) K) phase of the warm hot intergalactic medium (WHIM). While the hot WHIM is hard to detect due to its high ionisation level, the warm (T less than or similar to 10(5.5) K) phase of the WHIM has been very robustly detected in the far-ultraviolet (FUV) band. We adopted the assumption that the hot and warm WHIM phases are co-located and therefore used the FUV-detected warm WHIM as a tracer for the cosmologically interesting hot WHIM. We performed an X-ray follow-up in the sight line of the blazar PKS 2155-304 at the redshifts where previous FUV measurements of O VI, Si IV, and broad Lyman-alpha (BLA) absorption have indicated the existence of the warm WHIM. We looked for the O VII Hc alpha and O VIII Ly alpha absorption lines, the most likely hot WHIM tracers. Despite the very large exposure time (approximate to 1 Ms), the Reflection Grating Spectrometer unit 1 (RGS1) on-board XMM-Newton data yielded no significant detection which corresponds to upper limits of log N(O VII (cm(-2)))