Sort by: Order: Results:

Now showing items 1-12 of 12
  • Guo, Qingxue; Song, Haifeng; Kang, Jieyu; Korpelainen, Helena; Li, Chunyang (2018)
    Knowledge of how competition and facilitation affect photosynthetic traits and nitrogen metabolism contributes to understanding of plant-plant interaction mechanisms. We transplanted two larch species, Larix kaempferi and L. olgensis, to establish intra- and interspecific interaction experiments under different types of soil. Experiment 1: Two different soil types were selected, one from a c. twenty years old L. kaempferi plantation (named larch soil) and another from a secondary natural forest (named mixed forest soil). The experiment included three types of plant interactions (L kaempferi + L. kaempferi, L. olgensis + L. olgensis, and L. kaempferi + L. olgensis) and two soil types. Experiment 2: N fertilization was applied to larch soil. The experiment included the same three types of plant interactions as in Experiment 1 and two N treatments. The growth of L kaempferi was negatively affected by larch soil and accelerated by N fertilization, particularly under interspecific interaction. The effects of soil type combined with plant-plant interactions or N fertilization influenced the chlorophyll pigment content, net photosynthetic rate (Pn), photosynthetic N use efficiency (PNUE) and total non-structural carbohydrates of leaves (TNC). CM a/Chl b (ratio of chlorophyll a to chlorophyll b) was higher when the growth of L. kaempferi was facilitated by the presence of L olgensis in mixed forest soil. However, the ratio significantly declined when L. kaempferi confronted strong competition from L. olgensis in larch soil without N fertilization. Under N fertilization in larch soil, Chl a/Chl b of L. olgensis significantly increased by the presence of L. kaempferi. Plant-plant interactions and soil types affected the number of chloroplasts, especially in L. kaempferi, which had a greater number of chloroplasts under interspecific interactions than in monoculture when growing in mixed forest soil. L. olgensis enhanced its ability to absorb N-NO3- under interspecific interactions in larch N- soil, while L. kaempferi enhanced its ability to absorb N-NH4+ under interspecific competition in mixed forest soil. Competition or facilitation modified the photosynthetic traits and nitrogen metabolism depending on the type of soil. Differences in these physiological processes contribute to divergent performance among individuals growing under interspecific or intraspecific competition, or in isolation.
  • Yu, Lei; Song, Mengya; Lei, Yanbao; Korpelainen, Helena; Niinemets, Ulo; Li, Chunyang (2019)
    Leaf and root systems are known to show a high degree of developmental plasticity in response to the local environment. However, few studies have investigated simultaneously the leaf and root traits as affected by competition and phosphorus (P) fertilization, especially in connection with the primary succession. We investigated morphological and physiological responses to different competition treatments (infra- vs. interspecific competition) and P regimes in seedlings of Abies fabri and Picea brachytyla, collected from the late succession stage Hailuogou glacier retreat area. A. fabri had a greater total chlorophyll content and specific leaf area (SLA), higher leaf nitrogen (N) and P concentrations, as well as a higher water use efficiency (assessed by the carbon isotope composition, delta C-13) and N absorption relative to P. brachytyla under P fertilization conditions, and its total biomass responded more strongly to P fertilization, especially under interspecific competition. P fertilization decreased the specific root length (SRL) and ectomycorrhizal infection in both species and specific root tip density in P. brachytyla but it had no effect on the average root diameter. We concluded that similar changes in root characteristics, but the superior performance of above-ground traits in A. fabri in response to P availability, especially under competition, explain the greater competitive capacity of A. fabri at final stages of succession. These findings highlight the influence of soil nutrition availability and competition on the functional traits of plants and contribute to the understanding of the role of relative modifications in leaf and root traits during succession.
  • Yu, Lei; Song, Mengya; Lei, Yanbao; Duan, Baoli; Berninger, Frank; Korpelainen, Helena; Niinemets, Ülo; Li, Chunyang (2017)
    Intra- and interspecific competition and modifications in environmental characteristics are the main drivers of plant community dynamics, but few studies have investigated the combined effects of competition and phosphorus (P) availability on ecological succession. Seedlings of conifers Abies fabri and Picea brachytyla were collected from the late-stage Hailuogou glacier retreat area and grown under different P regimes (control and P fertilization) to investigate the impact of intra- and interspecific competition on photosynthetic capacity, resource (water, N and P) use efficiency and growth performance in two types of native soil. In the control treatment, there were no differences in the total biomass of A. fabri between the two competition patterns under either type of soil, whereas interspecific competition decreased the total biomass of P. brachytyla grown in the soil collected from A. fabri plots. However, under P fertilization, A. fabri individuals exposed to interspecific competition showed a stronger competitive ability, as their total biomass, absolute height growth rate, net photosynthetic rate, water use efficiency (delta C-13) and leaf P content were significantly higher under interspecific competition compared to intraspecific competition. No differences in these traits were detected in P. brachytyla between the two competition patterns. The results indicated that P plays an important role in determining asymmetric competition patterns among Pinaceae species. The interactive effect of interspecific competition and P availability highlighted here could influence the community composition and dynamics of plants during late stage primary succession in a glacier retreat area.
  • Fattorini, Simone; Mantoni, Cristina; Di Biase, Letizia; Strona, Giovanni; Pace, Loretta; Biondi, Maurizio (2020)
    The concept of generic diversity expresses the 'diversification' of species into genera in a community. Since niche overlap is assumed to be higher in congeneric species, competition should increase generic diversity. On the other hand, generic diversity might be lower in highly selective environments, where only species with similar adaptations can survive. We used the distribution of tenebrionid beetles in Central Italy to investigate how generic diversity varies with elevation from sea level to 2400 m altitude. Generic diversity of geophilous tenebrionids decreased sharply with elevation, whereas the generic diversity of xylophilous tenebrionids showed similarly high values across the gradient. These results suggest that geophilous species are more sensitive to variation in environmental factors, and that the advantages of close relationships (similar adaptations to harsh conditions) are greater than the possible drawbacks (competition). This is consistent with the fact that geophilous tenebrionids are mostly generalist detritivores, and hence weakly affected by competition for resources. By contrast, xylophilous species are more protected from harsh/selective conditions, but more limited by competition for microhabitats and food. Our results support the environmental filtering hypothesis for the species composition of tenebrionid beetles along an elevational gradient.
  • Song, Mengya; Yu, Lei; Jiang, Yonglei; Korpelainen, Helena; Li, Chunyang (2019)
    The stress gradient hypothesis predicts that plant-plant interactions switch between facilitation (positive) and competition (negative) along environmental gradients, with facilitation being more common under high abiotic stress conditions relative to more moderate abiotic stress conditions. Our aim was to reveal, whether the interactions between Populus purdomii Rehder and Salix rehderiana Schneider switch from positive to negative during the early stages of primary succession in the Gongga Mountain glacier retreat region. We also investigated, whether soil age is a major driving factor for the transformation of interactions between neighboring plants. We analyzed differences between intraspecific interactions and interspecific interactions of Populus and Salix under 20- and 40-year-old soil conditions, including plant biomass accumulation and allocation, nutrient absorption and utilization, relative competition intensity, non-structural carbohydrates, foliar carbon and nitrogen isotope composition, mesophyll cell ultrastructure, soil microbial biomass and community structure, extracellular enzyme activities, and soil organic carbon (SOC), soil total nitrogen (TN), soil ammonium (NH4+-N), and soil nitrate (NO3--N) contents. We found that P. purdomii and S. rehderiana growing under interspecific interactions had greater contents of aboveground dry matter, belowground dry matter and total dry matter compared to intraspecific interactions in 20-year-old soil. Furthermore, in 40-year-old soil conditions, the phospholipid fatty acid (PLFA) analysis showed that Populus and Salix exposed to interspecific interactions exhibited lower amounts of gram-positive bacteria, fungi (18,1 omega 9c) and actinomycetes, and lower levels of total PLFAs than those growing under intraspecific interactions. The redundancy analysis (RDA) results demonstrated that soil N was the most important parameter contributing to the composition of microbial communities. In addition, the N-15 stable isotope labeling method showed that Populus and Salix growing under interspecific interactions had higher foliage delta N-15 derived from NO3- (delta N-15-NO3-) than those growing under intraspecific interactions in 20-year-old soil. In summary, our results demonstrated that Populus-Salix interactions exhibited positive effects on survival in 20-year-old soil. Conversely, under 40-year-old soil conditions, Populus-Salix interactions presented negative effects in relation to nutrients and elimination by neighboring plants. Moreover, soil age is a major driving factor for plant-plant interactions that shift from positive to negative with an increasing soil age in the Gongga Mountain glacier forefield. In all, our results support the stress gradient hypothesis. Our findings improve understanding of plant-plant interactions and plant-soil feedbacks during the early stages of soil development, and of the construction of vegetation communities.
  • Yu, Lei; Song, Mengya; Xia, Zhichao; Korpelainen, Helena; Li, Chunyang (2019)
    Although extensive research has been conducted on the temporal dynamics of plant-plant interactions, little is known about the effect of phosphorus (P) availability. In this study, Abies fabri and Picea brachytyla seedlings were collected from the late-stage Hailuogou glacier retreat area and grown under different P regimes (control and P fertilization) from year 2015 to 2016 in a common garden experiment to investigate whether plant-plant interactions are modulated by P availability. We found that P fertilization affected the relative competition intensity (RCI). Under control conditions in 2015, the growth of A. fabri was facilitated by the presence of P. brachytyla. Under P fertilization, the facilitative effect was more intensive: the leaf, stem and total biomass of A. fabri significantly increased under interspecific interaction compared with intraspecific interaction, but no effect was found in P. brachytyla. RCI showed similar tendencies both in 2015 and 2016. In addition, plant-plant interactions and P fertilization caused temporal variation in C, N, P and non-structural carbohydrate (NSC) contents. The growth of A. fabri greatly benefited from the presence of P. brachytyla when exposed to P fertilization and showed higher biomass, and C, N, P and NSC accumulations. Our results demonstrated interactive effects between environmental conditions (i.e. P availability) and plant-plant interactions that are closely related to resource accumulation.
  • Rask, Martti; Sairanen, Samuli; Vesala, Sami; Arvola, Lauri; Estlander, Satu; Olin, Mikko (2014)
  • Sanchez-Hernandez, Javier; Hayden, Brian; Harrod, Chris; Kahilainen, Kimmo K. (2021)
    A mechanistic understanding of how environmental change affects trophic ecology of fish at the individual and population level remains elusive. To address this, we conducted a space-for-time approach incorporating environmental gradients (temperature, precipitation and nutrients), lake morphometry (visibility, depth and area), fish communities (richness, competition and predation), prey availability (richness and density) and feeding (population niche breadth and individual trophic specialisation) for 15 native fish taxa belonging to different thermal guilds from 35 subarctic lakes along a marked climate-productivity gradient corresponding to future climate change predictions. We revealed significant and contrasting responses from two generalist species that are abundant and widely distributed in the region. The cold-water adapted European whitefish (Coregonus lavaretus) reduced individual specialisation in warmer and more productive lakes. Conversely, the cool-water adapted Eurasian perch (Perca fluviatilis) showed increased levels of individual specialism along climate-productivity gradient. Although whitefish and perch differed in the way they consumed prey along the climate-productivity gradient, they both switched from consumption of zooplankton in cooler, less productive lakes, to macrozoobenthos in warmer, more productive lakes. Species with specialist benthic or pelagic feeding did not show significant changes in trophic ecology along the gradient. We conclude that generalist consumers, such as warmer adapted perch, have clear advantages over colder and clear-water specialised species or morphs through their capacity to undergo reciprocal benthic-pelagic switches in feeding associated with environmental change. The capacity to show trophic flexibility in warmer and more productive lakes is likely a key trait for species dominance in future communities of high latitudes under climate change.
  • Rask, Martti; Vuorenmaa, Jussi; Nyberg, Kari; Tammi, Jouni; Mannio, Jaakko; Olin, Mikko; Kortelainen, Pirkko; Raitaniemi, Jari; Vesala, Sami (2014)
    Finnish-lake and fish-status surveys indicated that 4900 small headwater lakes suffered from acidic deposition and 1600–3200 roach (Rutilus rutilus) and perch (Perca fluviatilis) populations were affected or extinct by the end of 1980s. Since the late 1980s, successful sulphur emission reductions in Europe have induced a chemical recovery of acidified lakes. This resulted in decreases in sulphate and labile aluminium concentrations and increases in pH and alkalinity during the 1990s. The first signs of recovery in affected perch populations were observed in the early 1990s. New strong year-classes appeared and the population structure returned to normal. Little if any recovery of the affected populations of the more acid-sensitive species, roach, was recorded. This may have been due to still critical water quality conditions for successful reproduction of sensitive roach and/or organic acid episodes in the 2000s, suppressing the recovery of buffering capacity.
  • Rosell, Frank; Cross, Hannah B.; Johnsen, Christin B.; Sundell, Janne; Zedrosser, Andreas (2019)
    The invasion of a species can cause population reduction or extinction of a similar native species due to replacement competition. There is a potential risk that the native Eurasian beaver (Castor fiber) may eventually be competitively excluded by the invasive North American beaver (C. canadensis) from areas where they overlap in Eurasia. Yet currently available methods of census and population estimates are costly and time-consuming. In a laboratory environment, we investigated the potential of using dogs (Canis lupus familiaris) as a conservation tool to determine whether the Eurasian or the North American beaver is present in a specific beaver colony. We hypothesized that dogs can discriminate between the two beaver species, via the odorant signal of castoreum from males and females, in two floor platform experiments. We show that dogs detect scent differences between the two species, both from dead beaver samples and from scent marks collected in the field. Our results suggest that dogs can be used as an "animal biosensor" to discriminate olfactory signals of beaver species, however more tests are needed. Next step should be to test if dogs discern between beaver species in the field under a range of weather conditions and habitat types and use beaver samples collected from areas where the two species share the same habitat. So far, our results show that dogs can be used as a promising tool in the future to promote conservation of the native beaver species and eradication of the invasive one. We therefore conclude that dogs may be an efficient non-invasive tool to help conservationist to manage invasive species in Europe, and advocate for European wildlife agencies to invest in this new tool.
  • Guo, Qingxue; Wu, Xiaoyi; Korpelainen, Helena; Li, Chunyang (2020)
    Plant-plant competition is a dynamic and complicated process that is strongly influenced by abiotic conditions. Drought is a critical threat to forests, particularly to young plantation forests. Temporal changes in competition combined with the effects of drought may dramatically influence the physiological traits of plants. Cunninghamia lanceolata plants exposed to intra-specific competition and no-competition conditions were investigated under two soil water levels (well-watered and drought). Changes in plant-plant competition relationships and nitrogen uptake rates were measured at different harvest times. The effects of drought and plant competition on physiological traits, for example, leaf nitrogen allocation, δ13C, and levels of abscisic acid (ABA), indole acetic acid (IAA) and jasmonic acid (JA), were also explored. Our results indicated that C. lanceolata shifted from intense neighbor competition to facilitation under well-watered conditions, whereas under drought neighbor competition became much stronger at the second harvest compared to the first harvest. Strong competition significantly decreased N uptake under drought. Leaf NH4+, NO3- and N allocation to water-soluble proteins increased under drought at the first harvest, but significantly declined under prolonged drought. Leaf, stem and root starch concentrations were enhanced by drought. However, during prolonged drought, the root starch concentrations, leaf δ13C, leaf ABA and starch content of C. lanceolata were much lower under strong neighbor competition than in no-competition conditions, which demonstrated that the combined effects of drought and strong competition were more harmful to plant growth and survival compared to single effects. Our study demonstrated that drought combined with competition strongly affected the N uptake, N allocation and physiological traits of plants. Intense competition imposed by neighbors is a great threat to the growth and survival of young C. lanceolata plantations under prolonged drought.
  • Lizarazo Torres, Clara; Tuulos, Antti; Jokela, Venla; Mäkelä, Pirjo (2020)
    Mixed cropping, including intercropping, is the oldest form of systemized agricultural production and involves the growing of two or more species or cultivars of the same species simultaneously in the same field. However, mixed cropping has been little by little replaced by sole crop systems, especially in developed countries. Some of the advantages of mixed cropping are, for example, resource use efficiency and yield stability, but there are also several challenges, such as weed management and competition. The boreal-nemoral region lies within the region 55 to 70 degrees N. In this area, for example in Finland, the length of the thermal growing season varies from >105 to over 185 days. Typically, variation between locations and years is marked. However, during the year, there can be a wide range of temperature extremes between -70 and +30 degrees C. The majority of cropping systems in this region are usually monocultures, except for forage grass mixtures. The possibility of having several crops in a mixture is very challenging in the region due to the short growing season and extreme cold temperatures, meaning that crop earliness and overwintering capacity are a considerable restriction for year-round mixed cropping. A further restriction is the quality requirements set by the industry. Our review will explore a range of mixed cropping possibilities for the boreal-nemoral region, including different possible combinations of spring, winter, perennial, biennial, catch, and cover crops. The reviewed mixed cropping systems could considerably improve the sustainability and efficiency of crop production.