Browsing by Subject "INTRUSION"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Luoma, S.; Okkonen, J.; Korkka-Niemi, K.; Hendriksson, N.; Backman, B. (2015)
    The groundwater in a shallow, unconfined, low-lying coastal aquifer in Santala, southern Finland, was chemically characterised by integrating multivariate statistical approaches, principal component analysis (PCA) and hierarchical cluster analysis (HCA), based on the stable isotopes delta H-2 and delta O-18, hydrogeochemistry and field monitoring data. PCA and HCA yielded similar results and classified groundwater samples into six distinct groups that revealed the factors controlling temporal and spatial variations in the groundwater geochemistry, such as the geology, anthropogenic sources from human activities, climate and surface water. High temporal variation in groundwater chemistry directly corresponded to precipitation. With an increase in precipitation, KMnO4 consumption, EC, alkalinity and Ca concentrations also increased in most wells, while Fe, Al, Mn and SO4 were occasionally increased during spring after the snowmelt under specific geological conditions. The continued increase in NO3 and metal concentrations in groundwater indicates the potential contamination risk to the aquifer. Stable isotopes of delta O-18 and delta H-2 indicate groundwater recharge directly from meteoric water, with an insignificant contribution from lake water, and no seawater intrusion into the aquifer. Groundwater geochemistry suggests that local seawater intrusion is temporarily able to take place in the sulfate reduction zone along the freshwater and seawater mixed zone in the low-lying coastal area, but the contribution of seawater was found to be very low. The influence of lake water could be observed from higher levels of KMnO4 consumption in wells near the lake. The integration of PCA and HCA with conventional classification of groundwater types, as well as with the hydrogeochemical data, provided useful tools to identify the vulnerable groundwater areas representing the impacts of both natural and human activities on water quality and the understanding of complex groundwater flow system for the aquifer vulnerability assessment and groundwater management in the future.
  • Fred, Riikka Maria; Heinonen, Aku; Heikkila, Pasi (2019)
    The 1.64 Ga Ahvenisto complex, southeastern Finland, is an anorthosite-mangerite-charnokite-granite (AMCG) suite in which diverse interaction styles of coeval mafic and felsic magmas are observed. Commingling, resulting in mafic pillows and net-veined granite dykes, and chemical mixing producing hybrid rocks, are the most common interaction types. Detailed description of the factors that controlled the interaction styles and relationships between involved rock types are provided using targeted mapping, petrography, and geochemical analyses complemented by chemical mixing and melt viscosity modeling. Interaction occurred at intermediate stages in the magmatic evolution of the complex: when the last fractions of mafic (monzodioritic) melts and the earliest fractions of felsic (hornblende granitic) melts existed simultaneously. Differentiation of mafic magma has produced three monzodioritic rock types: 1) olivine monzodiorite (most mafic, Mg# 49-40), 2) ferrodiorite (Mg# 42-33), and 3) massive monzodiorite (most evolved, Mg# 28-27). The types form an evolutionary trend, and each exhibits different style of interaction with coeval hbl-granite resulting from contrasting conditions and properties (temperature, viscosity, composition). The variation in these properties due to magma evolution and relative proportions of interacting magmas dictated the interaction style: interaction between olivine monzodiorites and granite was almost negligible; ferrodiorites intermingled forming pillows with granitic veins intruding them; and chemical mixing of massive monzodiorite and hbl-granite produced hybrid rocks.