Browsing by Subject "INULIN"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Sloan, Tim J.; Jalanka, Jonna; Major, Giles A. D.; Krishnasamy, Shanthi; Pritchard, Sue; Abdelrazig, Salah; Korpela, Katri; Singh, Gulzar; Mulvenna, Claire; Hoad, Caroline L.; Marciani, Luca; Barrett, David A.; Lomer, Miranda C. E.; de Vos, Willem M.; Gowland, Penny A.; Spiller, Robin C. (2018)
    Background & aims Ingestion of poorly digested, fermentable carbohydrates (fermentable oligo-, di-, mono-saccharides and polyols; FODMAPs) have been implicated in exacerbating intestinal symptoms and the reduction of intake with symptom alleviation. Restricting FODMAP intake is believed to relieve colonic distension by reducing colonic fermentation but this has not been previously directly assessed. We performed a randomised controlled trial comparing the effect of a low FODMAP diet combined with either maltodextrin or oligofructose on colonic contents, metabolites and microbiota. Methods A parallel randomised controlled trial in healthy adults (n = 37). All subjects followed a low FODMAP diet for a week and supplemented their diet with either maltodextrin (MD) or oligofructose (OF) 7g twice daily. Fasted assessments performed pre- and post-diet included MRI to assess colonic volume, breath testing for hydrogen and methane, and stool collection for microbiota analysis. Results The low FODMAP diet was associated with a reduction in Bifidobacterium and breath hydrogen, which was reversed by oligofructose supplementation. The difference in breath hydrogen between groups post-intervention was 27ppm (95% CI 7 to 50, P Conclusion A low FODMAP diet reduces total bacterial count and gas production with little effect on colonic volume.
  • Shi, Qiao; Hou, Yaxi; Yan, Xu; Mørkeberg, Kristian B.R.; Tenkanen, Tiina Maija (2019)
    Levans and inulins are fructans with mainly beta-(2 -> 6) and beta-(2 -> 1) linkages, respectively. Levans are produced by many lactic acid bacteria, e.g. during sourdough fermentation. Levans have shown prebiotic properties and may also function as in situ-produced hydrocolloids. So far, levan contents have been measured by acid hydrolysis, which cannot distinguish levans from e.g. inulins. In order to develop a specific analysis for levan in food matrices, a Paenibacillus amylolyticus endolevanase was combined with exoinulinase for levan hydrolysis. A separate endoinulinase treatment was used to detect the possible presence of inulin. Interfering sugars were removed by a pre-wash with aqueous ethanol. Levan content was estimated from fructose and glucose released in the hydrolysis, with a correction made for the residual fructose and glucose-containing sugars. The method was validated using wheat model doughs spiked with commercial Erwinia levan, and tested by analyzing levan content in Leuconostoc mesenteroides DSM 20343-fermented fava bean doughs.
  • Epie, Kenedy E.; Santanen, Arja; Makela, Pirjo S. A.; Stoddard, Frederick L. (2018)
    Jerusalem artichoke (Helianthus tuberosus L.) produces substantial shoots not used as food. To test its potential as a sustainable bioenergy crop, we studied the effects of synthetic fertilizer and intercropped legumes as nitrogen (N) sources on the growth, aboveground biomass dry matter yield and energy qualities of this crop. Plant height, leaf area index (LAI), SPAD-value, biomass yield, ash content and mineral element composition were determined. Mean aboveground biomass yields were not significantly affected by N source (legume intercrops and synthetic fertilizer) and ranged from 13 to 17 t ha(-1). Remarkably, plants given no fertilizer yielded equally to plants given 90 N kg ha(-1). These results confirm that Jerusalem artichoke, compared to other energy crops, have less need for N and can potentially be sustained by N fixing legumes in an intercropped system. This could reduce or eliminate production and environmental cost in cultivation of biomass feedstock for energy use.