Browsing by Subject "INVERSE CONDUCTIVITY PROBLEM"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Tamminen, J.; Tarvainen, T.; Siltanen, S. (2017)
    The D-bar method at negative energy is numerically implemented. Using the method, we are able to numerically reconstruct potentials and investigate exceptional points at negative energy. Subsequently, applying the method to diffuse optical tomography, a new way of reconstructing the diffusion coefficient from the associated Complex Geometrics Optics solution is suggested and numerically validated.
  • Mueller, J. L.; Siltanen, S. (2020)
    Electrical impedance tomography (EIT) is an imaging modality where a patient or object is probed using harmless electric currents. The currents are fed through electrodes placed on the surface of the target, and the data consists of voltages measured at the electrodes resulting from a linearly independent set of current injection patterns. EIT aims to recover the internal distribution of electrical conductivity inside the target. The inverse problem underlying the EIT image formation task is nonlinear and severely ill-posed, and hence sensitive to modeling errors and measurement noise. Therefore, the inversion process needs to be regularized. However, traditional variational regularization methods, based on optimization, often suffer from local minima because of nonlinearity. This is what makes regularized direct (non-iterative) methods attractive for EIT. The most developed direct EIT algorithm is the D-bar method, based on complex geometric optics solutions and a nonlinear Fourier transform. Variants and recent developments of D-bar methods are reviewed, and their practical numerical implementation is explained.