Browsing by Subject "ION DISTRIBUTIONS"

Sort by: Order: Results:

Now showing items 1-5 of 5
  • Blanco-Cano, Xochitl; Battarbee, Markus; Turc, Lucile; Dimmock, Andrew P.; Kilpua, Emilia K. J.; Hoilijoki, Sanni; Ganse, Urs; Sibeck, David G.; Cassak, Paul A.; Fear, Robert C.; Järvinen, Riku; Juusola, Liisa; Pfau-Kempf, Yann; Vainio, Rami; Palmroth, Minna (2018)
    In this paper we present the first identification of foreshock cavitons and the formation of spontaneous hot flow anomalies (SHFAs) with the Vlasiator global magnetospheric hybrid-Vlasov simulation code. In agreement with previous studies we show that cavitons evolve into SHFAs. In the presented run, this occurs very near the bow shock. We report on SHFAs surviving the shock crossing into the down-stream region and show that the interaction of SHFAs with the bow shock can lead to the formation of a magnetosheath cavity, previously identified in observations and simulations. We report on the first identification of long-term local weakening and erosion of the bow shock, associated with a region of increased foreshock SHFA and caviton formation, and repeated shock crossings by them. We show that SHFAs are linked to an increase in suprathermal particle pitch-angle spreads. The realistic length scales in our simulation allow us to present a statistical study of global caviton and SHFA size distributions, and their comparable size distributions support the theory that SHFAs are formed from cavitons. Virtual spacecraft observations are shown to be in good agreement with observational studies.
  • Juusola, Liisa; Hoilijoki, Sanni; Pfau-Kempf, Yann; Ganse, Urs; Järvinen, Riku; Battarbee, Markus; Kilpua, Emilia; Turc, Lucile; Palmroth, Minna (2018)
    Fast plasma flows produced as outflow jets from reconnection sites or X lines are a key feature of the dynamics in the Earth's magnetosphere. We have used a polar plane simulation of the hybrid-Vlasov model Vlasiator, driven by steady southward interplanetary magnetic field and fast solar wind, to study fast plasma sheet ion flows and related magnetic field structures in the Earth's magnetotail. In the simulation, lobe reconnection starts to produce fast flows after the increasing pressure in the lobes has caused the plasma sheet to thin sufficiently. The characteristics of the earthward and tailward fast flows and embedded magnetic field structures produced by multi-point tail reconnection are in general agreement with spacecraft measurements reported in the literature. The structuring of the flows is caused by internal processes: interactions between major X points determine the earthward or tailward direction of the flow, while interactions between minor X points, associated with leading edges of magnetic islands carried by the flow, induce local minima and maxima in the flow speed. Earthward moving flows are stopped and diverted duskward in an oscillatory (bouncing) manner at the transition region between tail-like and dipolar magnetic fields. Increasing and decreasing dynamic pressure of the flows causes the transition region to shift earthward and tailward, respectively. The leading edge of the train of earthward flow bursts is associated with an earthward propagating dipolarization front, while the leading edge of the train of tailward flow bursts is associated with a tailward propagating plasmoid. The impact of the dipolarization front with the dipole field causes magnetic field variations in the Pi2 range. Major X points can move either earthward or tailward, although tailward motion is more common. They are generally not advected by the ambient flow. Instead, their velocity is better described by local parameters, such that an X point moves in the direction of increasing reconnection electric field strength. Our results indicate that ion kinetics might be sufficient to describe the behavior of plasma sheet bulk ion flows produced by tail reconnection in global near-Earth simulations.
  • Turc, L.; Ganse, U.; Pfau-Kempf, Y.; Hoilijoki, S.; Battarbee, M.; Juusola, L.; Järvinen, R.; Brito, T.; Grandin, M.; Palmroth, M. (2018)
    In this paper, we present a detailed study of the effects of the interplanetary magnetic field (IMF) strength on the foreshock properties at small and large scales. Two simulation runs performed with the hybrid-Vlasov code Vlasiator with identical setup but with different IMF strengths, namely, 5 and 10 nT, are compared. We find that the bow shock position and shape are roughly identical in both runs, due to the quasi-radial IMF orientation, in agreement with previous magnetohydrodynamic simulations and theory. Foreshock waves develop in a broader region in the higher IMF strength run, which we attribute to the larger growth rate of the waves. The velocity of field-aligned beams remains essentially the same, but their density is generally lower when the IMF strength increases, due to the lower Mach number. Also, we identify in the regular IMF strength run ridges of suprathermal ions which disappear at higher IMF strength. These structures may be a new signature of the foreshock compressional boundary. The foreshock wave field is structured over smaller scales in higher IMF conditions, due to both the period of the foreshock waves and the transverse extent of the wave fronts being smaller. While the foreshock is mostly permeated by monochromatic waves at typical IMF strength, we find that magnetosonic waves at different frequencies coexist in the other run. They are generated by multiple beams of suprathermal ions, while only a single beam is observed at typical IMF strength. The consequences of these differences for solar wind-magnetosphere coupling are discussed. Plain Language Summary Our solar system is filled with a stream of particles escaping from the Sun, called the solar wind. The Earth is shielded from these particles by its magnetic field, which creates a magnetic bubble around our planet, the magnetosphere. Because the solar wind flow is supersonic, a bow shock forms in front of the magnetosphere to slow it down. The outermost region of the near-Earth space is called the foreshock. It is a very turbulent region, filled with particles reflected off the Earth's bow shock, and with a variety of magnetic waves. These waves can be transmitted inside the magnetosphere and create disturbances in the magnetic field on the Earth's surface. In this work, we use supercomputer simulations to study how the foreshock changes when the solar magnetic field, carried by the solar wind, intensifies. This happens in particular during solar storms, which create stormy space weather at Earth and can have adverse consequences on, for example, spacecraft electronics and power grids. We find that the foreshock properties are very different during these events compared to normal conditions and that these changes may have consequences in the regions closer to Earth.
  • Battarbee, Markus; Blanco-Cano, Xochitl; Turc, Lucile; Kajdic, Primoz; Johlander, Andreas; Tarvus, Vertti; Fuselier, Stephen; Trattner, Karlheinz; Alho, Markku; Brito, Thiago; Ganse, Urs; Pfau-Kempf, Yann; Akhavan-Tafti, Mojtaba; Karlsson, Tomas; Raptis, Savvas; Dubart, Maxime; Grandin, Maxime; Suni, Jonas; Palmroth, Minna (2020)
    The foreshock is a region of space upstream of the Earth's bow shock extending along the interplanetary magnetic field (IMF). It is permeated by shock-reflected ions and electrons, low-frequency waves, and various plasma transients. We investigate the extent of the He2+ foreshock using Vlasiator, a global hybrid-Vlasov simulation. We perform the first numerical global survey of the helium foreshock and interpret some historical foreshock observations in a global context. The foreshock edge is populated by both proton and helium field-aligned beams, with the proton foreshock extending slightly further into the solar wind than the helium foreshock and both extending well beyond the ultra-low frequency (ULF) wave foreshock. We compare our simulation results with Magnetosphere Multiscale (MMS) Hot Plasma Composition Analyzer (HPCA) measurements, showing how the gradient of suprathermal ion densities at the foreshock crossing can vary between events. Our analysis suggests that the IMF cone angle and the associated shock obliquity gradient can play a role in explaining this differing behaviour. We also investigate wave-ion interactions with wavelet analysis and show that the dynamics and heating of He2+ must result from proton-driven ULF waves. Enhancements in ion agyrotropy are found in relation to, for example, the ion foreshock boundary, the ULF foreshock boundary, and specular reflection of ions at the bow shock. We show that specular reflection can describe many of the foreshock ion velocity distribution function (VDF) enhancements. Wave-wave interactions deep in the foreshock cause de-coherence of wavefronts, allowing He2+ to be scattered less than protons.
  • Dubart, Maxime; Ganse, Urs; Osmane, Adnane; Johlander, Andreas; Battarbee, Markus; Grandin, Maxime; Pfau-Kempf, Yann; Turc, Lucile; Palmroth, Minna (2020)
    Kinetically driven plasma waves are fundamental for a description of the thermodynamical properties of the Earth's magnetosheath. The most commonly observed ion-scale instabilities are generated by temperature anisotropy of the ions, such as the mirror and proton cyclotron instabilities. We investigate here the spatial resolution dependence of the mirror and proton cyclotron instabilities in a global hybrid-Vlasov simulation using the Vlasiator model; we do this in order to find optimal resolutions and help future global hybrid-Vlasov simulations to save resources when investigating those instabilities in the magnetosheath. We compare the proton velocity distribution functions, power spectra and growth rates of the instabilities in a set of simulations with three different spatial resolutions but otherwise identical setup. We find that the proton cyclotron instability is absent at the lowest resolution and that only the mirror instability remains, which leads to an increased temperature anisotropy in the simulation. We conclude that the proton cyclotron instability, its saturation and the reduction of the anisotropy to marginal levels are resolved at the highest spatial resolution. A further increase in resolution does not lead to a better description of the instability to an extent that would justify this increase at the cost of numerical resources in future simulations. We also find that spatial resolutions between 1.32 and 2.64 times the inertial length in the solar wind present acceptable limits for the resolution within which the velocity distribution functions resulting from the proton cyclotron instability are still bi-Maxwellian and reach marginal stability levels. Our results allow us to determine a range of spatial resolutions suitable for the modelling of the proton cyclotron and mirror instabilities and should be taken into consideration regarding the optimal grid spacing for the modelling of these two instabilities, within available computational resources.