Browsing by Subject "ION-CHANNEL"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Timperley, Christopher M.; Forman, Jonathan E.; Aas, Pal; Abdollahi, Mohammad; Benachour, Djafer; Al-Amri, Abdullah Saeed; Baulig, Augustin; Becker-Arnold, Renate; Borrett, Veronica; Carino, Flerida A.; Curty, Christophe; Gonzalez, David; Geist, Michael; Kane, William; Kovarik, Zrinka; Martinez-Alvarez, Roberto; Mikulak, Robert; Fusaro Mourao, Nicia Maria; Neffe, Slawomir; Nogueira, Evandro De Souza; Ramasami, Ponnadurai; Raza, Syed K.; Rubaylo, Valentin; Saeed, Ahmed E. M.; Takeuchi, Koji; Tang, Cheng; Trifiro, Ferruccio; van Straten, Francois Mauritz; Suarez, Alejandra G.; Waqar, Farhat; Vanninen, Paula S.; Zafar-Uz-Zaman, Mohammad; Vucinic, Slavica; Zaitsev, Volodymyr; Zina, Mongia Said; Holen, Stian; Izzati, Fauzia Nurul (2018)
    Compounds that cause powerful sensory irritation to humans were reviewed by the Scientific Advisory Board (SAB) of the Organisation for the Prohibition of Chemical Weapons (OPCW) in response to requests in 2014 and 2017 by the OPCW Director-General to advise which riot control agents (RCAs) might be subject to declaration under the Chemical Weapons Convention (the Convention). The chemical and toxicological properties of 60 chemicals identified from a survey by the OPCW of RCAs that had been researched or were available for purchase, and additional chemicals recognised by the SAB as having potential RCA applications, were considered. Only 17 of the 60 chemicals met the definition of a RCA under the Convention. These findings were provided to the States Parties of the Convention to inform the implementation of obligations pertaining to RCAs under this international chemical disarmament and non-proliferation treaty.
  • Kambur, Oleg; Kaunisto, Mari A.; Winsvold, Bendik S.; Wilsgaard, Tom; Stubhaug, Audun; Zwart, John A.; Kalso, Eija; Nielsen, Christopher S. (2018)
    P2X7 is a nonselective cation channel activated by extracellular ATP. P2X7 activation contributes to the proinflammatory response to injury or bacterial invasion and mediates apoptosis. Recently, P2X7 function has been linked to chronic inflammatory and neuropathic pain. P2X7 may contribute to pain modulation both by effects on peripheral tissue injury underlying clinical pain states, and through alterations in central nervous system processing, as suggested by animal models. To further test its role in pain sensitivity, we examined whether variation within the P2RX7 gene, which encodes the P2X7 receptor, was associated with experimentally induced pain in human patients. Experimental pain was assessed in Tromso 6, a longitudinal and cross-sectional population-based study (N = 3016), and the BrePainGen cohort, consisting of patients who underwent breast cancer surgery (N = 831). For both cohorts, experimental pain intensity and tolerance were assessed with the cold-pressor test. In addition, multisite chronic pain was assessed in Tromso 6 and pain intensity 1 week after surgery was assessed in BrePainGen. We tested whether the single-nucleotide polymorphism rs7958311, previously implicated in clinical pain, was associated with experimental and clinical pain phenotypes. In addition, we examined effects of single-nucleotide polymorphisms rs208294 and rs208296, for which previous results have been equivocal. Rs7958311 was associated with experimental pain intensity in the meta-analysis of both cohorts. Significant associations were also found for multisite pain and postoperative pain. Our results strengthen the existing evidence and suggest that P2X7 and genetic variation in the P2RX7-gene may be involved in the modulation of human pain sensitivity.
  • Wei, Hong; Wu, Hai-Yun; Chen, Zuyue; Ma, Ai-Niu; Mao, Xiao-Fang; Li, Teng-Fei; Li, Xin-Yan; Wang, Yong-Xiang; Pertovaara, Antti (2016)
    Spinal transient receptor potential ankyrin 1 (TRPA1) channel is associated with various pain hypersensitivity conditions. Spinally, TRPA1 is expressed by central terminals of nociceptive nerve fibers and astrocytes. Among potential endogenous agonists of TRPA1 is H2O2 generated by D-amino acid oxidase (DAAO) in astrocytes. Here we studied whether prolonged block of the spinal TRPA1 or astrocytes starting at time of injury attenuates development and/or maintenance of neuropathic hypersensitivity. Additionally, TRPA1 and DAAO mRNA were determined in the dorsal root ganglion (DRG) and spinal dorsal horn (SDH). Experiments were performed in rats with spared nerve injury (SNI) and chronic intrathecal catheter. Drugs were administered twice daily for the first seven injury days or only once seven days after injury. Mechanical hypersensitivity was assessed with monofilaments. Acute and prolonged treatment with Chembridge-5861528 (a TRPA1 antagonist), carbenoxolone (an inhibitor of activated astrocytes), or gabapentin (a comparison drug) attenuated tactile allodynia-like responses evoked by low (2 g) stimulus. However, antihypersensitivity effect of these compounds was short of significance at a high (15 g) stimulus intensity. No preemptive effects were observed. In healthy controls, carbenoxolone failed to prevent hypersensitivity induced by spinal cinnamaldehyde, a TRPA1 agonist TRPA1 and DAAO mRNA in the DRG but not SDH were slightly increased in SNI, independent of drug treatment The results indicate that prolonged peri-injury block of spinal TRPA1 or inhibition of spinal astrocyte activation attenuates maintenance but not development of mechanical (tactile allodynia-like) hypersensitivity after nerve injury. (C) 2016 Elsevier Inc. All rights reserved.
  • Karki, Tytti; Tojkander, Sari (2021)
    Biophysical cues from the cellular microenvironment are detected by mechanosensitive machineries that translate physical signals into biochemical signaling cascades. At the crossroads of extracellular space and cell interior are located several ion channel families, including TRP family proteins, that are triggered by mechanical stimuli and drive intracellular signaling pathways through spatio-temporally controlled Ca2+-influx. Mechanosensitive Ca2+-channels, therefore, act as critical components in the rapid transmission of physical signals into biologically compatible information to impact crucial processes during development, morphogenesis and regeneration. Given the mechanosensitive nature of many of the TRP family channels, they must also respond to the biophysical changes along the development of several pathophysiological conditions and have also been linked to cancer progression. In this review, we will focus on the TRPV, vanilloid family of TRP proteins, and their connection to cancer progression through their mechanosensitive nature.