Browsing by Subject "IONIC LIQUIDS"

Sort by: Order: Results:

Now showing items 1-20 of 21
  • Donsbach, Carsten; Reiter, Kevin; Sundholm, Dage; Weigend, Florian; Dehnen, Stefanie (2018)
    The use of ionic liquids (C(n)C(1)Im)[BF4] with long alkyl chains (n=10,12) in the ionothermal treatment of Na-2[HgTe2] led to lamellar crystal structures with molecular macrocyclic anions [Hg8Te16](8-) (1), the heaviest known topological relative of porphyrin. [Hg8Te16](8-) differs from porphyrin by the absence of an electronic pi-system, which prevents a global aromaticity. Quantum chemical studies reveal instead small ring currents in the pyrrole-type five-membered rings that indicate weak local (sigma) aromaticity. As a result of their lamellar nature, the compounds are promising candidates for the formation of sheets containing chalcogenidometalate anions.
  • Melcr, Josef; Martinez-Seara, Hector; Nencini, Ricky; Kolafa, Jiri; Jungwirth, Pavel; Ollila, O. H. Samuli (2018)
    Binding affinities and stoichiometries of Na+ and Ca2+ ions to phospholipid bilayers are of paramount significance in the properties and functionality of cellular membranes. Current estimates of binding affinities and stoichiometries of cations are, however, inconsistent due to limitations in the available experimental and computational methods. In this work, we improve the description of the binding details of Na+ and Ca2+ ions to a 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayer by implicitly including electronic polarization as a mean field correction, known as the electronic continuum correction (ECC). This is applied by scaling the partial charges of a selected state-of-the-art POPC lipid model for molecular dynamics simulations. Our improved ECC-POPC model reproduces not only the experimentally measured structural parameters for the ion-free membrane, but also the response of lipid headgroup to a strongly bound cationic amphiphile, as well as the binding affinities of Na+ and Ca2+ ions. With our new model, we observe on the one side negligible binding of Na+ ions to POPC bilayer, while on the other side stronger interactions of Ca2+ primarily with phosphate oxygens, which is in agreement with the previous interpretations of the experimental spectroscopic data. The present model results in Ca2+ ions forming complexes with one to three POPC molecules with almost equal probabilities, suggesting more complex binding stoichiometries than those from simple models used to interpret the NMR data previously. The results of this work pave the way to quantitative molecular simulations with realistic electrostatic interactions of complex biochemical systems at cellular membranes.
  • Deb, Somdatta; Labafzadeh, Sara R.; Liimatainen, Unna; Parviainen, Arno; Hauru, Lauri K. J.; Azhar, Shoaib; Lawoko, Martin; Kulomaa, Tuomas; Kakko, Tia; Fiskari, Juha; Borrega, Marc; Sixta, Herbert; Kilpelainen, Ilkka; King, Alistair W. T. (2016)
    Wood is not fully soluble in current non-derivatising direct-dissolution solvents, contrary to the many reports in the literature quoting wood 'dissolution' in ionic liquids. Herein, we demonstrate that the application of autohydrolysis, as a green and economical wood pre-treatment method, allows for a massive increase in solubility compared to untreated wood. This is demonstrated by the application of two derivitising methods (phosphitylation and acetylation), followed by NMR analysis, in the cellulose-dissolving ionic liquids 1-allyl-3-methylimidazolium chloride ([amim]Cl) and 1,5-diazabicyclo[4.3.0]non-5-enium acetate ([DBNH][OAc]. In addition, the non-derivitising tetrabutylphosphonium acetate ([P-4444][OAc]) : DMSO-d6 electrolyte also allowed for dissolution of the autohydrolysed wood samples. By combination of different particle sizes and P-factors (autohydrolysis intensity), it has been clearly demonstrated that the solubility of even wood chips can be drastically increased by application of autohydrolysis. The physiochemical factors affecting wood solubility after autohydrolysis are also discussed.
  • Witos, Joanna; Karjalainen, Erno; Tenhu, Heikki; Wiedmer, Susanne K. (2020)
    Amphiphilic diblock copolymers consisting of a hydrophobic core containing a polymerized ionic liquid and an outer shell composed of poly(N-isoprolylacrylamide) were investigated by capillary electrophoresis and asymmetrical flow-field flow fractionation. The polymerized ionic liquid comprised poly(2-(1-butylimidazolium-3-yl)ethyl methacrylate tetrafluoroborate) with a constant block length (n = 24), while the length of the poly(N-isoprolylacrylamide) block varied (n = 14; 26; 59; 88). Possible adsorption of the block copolymer on the fused silica capillary, due to alterations in the polymeric conformation upon a change in the temperature (25 and 45 degrees C), was initially studied. For comparison, the effect of temperature on the copolymer conformation/hydrodynamic size was determined with the aid of asymmetrical flow-field flow fractionation and light scattering. To get more information about the hydrophilic/hydrophobic properties of the synthesized block copolymers, they were used as a pseudostationary phase in electrokinetic chromatography for the separation of some model compounds, that is, benzoates and steroids. Of particular interest was to find out whether a change in the length or concentration of the poly(N-isoprolylacrylamide) block would affect the separation of the model compounds. Overall, our results show that capillary electrophoresis and asymmetrical flow-field flow fractionation are suitable methods for characterizing conformational changes of such diblock copolymers.
  • Mäkelä, Valtteri; Wahlström, Ronny; Holopainen-Mantila, Ulla; Kilpeläinen, Ilkka; King, Alistair W. T. (2018)
    Herein, we describe a new method of assessing the kinetics of dissolution of single fibers by dissolution under limited dissolving conditions. The dissolution is followed by optical microscopy under limited dissolving conditions. Videos of the dissolution were processed in Image) to yield kinetics for dissolution, based on the disappearance of pixels associated with intact fibers. Data processing was performed using the Python language, utilizing available scientific libraries. The methods of processing the data include clustering of the single fiber data, identifying clusters associated with different fiber types, producing average dissolution traces and also extraction of practical parameters, such as, time taken to dissolve 25, SO, 75, 95, and 99.5% of the clustered fibers. In addition to these simple parameters, exponential fitting was also performed yielding rate constants for fiber dissolution. Fits for sample and cluster averages were variable, although demonstrating first-order kinetics for dissolution overall. To illustrate this process, two reference pulps (a bleached softwood kraft pulp and a bleached hardwood pre hydrolysis kraft pulp) and their cellulase-treated versions were analyzed. As expected, differences in the kinetics and dissolution mechanisms between these samples were observed. Our initial interpretations are presented, based on the combined mechanistic observations and single fiber dissolution kinetics for these different samples. While the dissolution mechanisms observed were similar to those published previously, the more direct link of mechanistic information with the kinetics improve our understanding of cell wall structure and pre-treatments, toward improved processability.
  • Rico del Cerro, Daniel; Koso, Tetyana V.; Kakko, Tia; King, Alistair W. T.; Kilpeläinen, Ilkka (2020)
    Herein, we demonstrate the activation of commercial chemical cellulose pulps towards chemical modification by a pre-treatment step with tetrabutylphosphonium acetate ([P-4444][OAc]). A heterogeneous (non-dissolving) pre-treatment was applied allowing for a significant reduction in crystallinity, without concomitant formation of the thermodynamically stable cellulose II. An increase in chemical reactivity was demonstrated using two model reactions; (1) acetylation (organic swelling conditions), where high degrees of substitution (DS) were obtained without the need for a catalyst, and (2) 4-acetamido-TEMPO oxidation (aqueous swelling conditions), where significant degrees of oxidation (DO) were obtained, beyond those for the untreated pulps. In both tests a notable improvement in cellulose reactivity was observed. Regioselectivity of acetylation was assessed using 2D NMR for one low and one high DS sample. The low DS showed a small degree of acetylation of the 6-OH, whereas, the high DS from the pre-treated sample showed mainly mixtures of triacetate and diacetates. Important mechanistic information is attained for future development of aqueous and organic-based reactions involving this ionic liquid pre-treatment.
  • Chen, Wen; Duša, Filip; Witos, Joanna Magdalena; Ruokonen, Suvi-Katriina; Wiedmer, Susanne Kristina (2018)
    Our study demonstrates that nanoplasmonic sensing (NPS) can be utilized for the determination of the phase transition temperature (Tm) of phospholipids. During the phase transition, the lipid bilayer undergoes a conformational change. Therefore, it is presumed that the Tm of phospholipids can be determined by detecting conformational changes in liposomes. The studied lipids included 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC). Liposomes in gel phase are immobilized onto silicon dioxide sensors and the sensor cell temperature is increased until passing the Tm of the lipid. The results show that, when the system temperature approaches the Tm, a drop of the NPS signal is observed. The breakpoints in the temperatures are 22.5 °C, 41.0 °C, and 55.5 °C for DMPC, DPPC, and DSPC, respectively. These values are very close to the theoretical Tm values, i.e., 24 °C, 41.4 °C, and 55 °C for DMPC, DPPC, and DSPC, respectively. Our studies prove that the NPS methodology is a simple and valuable tool for the determination of the Tm of phospholipids.
  • Hyväkkö, Uula; King, Alistair W. T.; Kilpeläinen, Ilkka (2014)
  • Asaadi, Shirin; Kakko, Tia; King, Alistair W. T.; Kilpeläinen, Ilkka; Hummel, Michael; Sixta, Herbert (2018)
    Cellulose acetate is one of the most important cellulose derivatives. Herein we present a method to access cellulose acetate with a low degree of substitution through a homogeneous reaction in the ionic liquid 1,5-diazabicyclo[4.3.0]non-5-enium acetate ([DBNH][OAc]). This ionic liquid has also been identified as an excellent cellulose solvent for dry-jet wet fiber spinning. Cellulose was dissolved in [DBNH] [OAc] and esterified in situ to be immediately spun into modified cellulose filaments with a degree of substitution (DS) value of 0.05-0.75. The structural properties of the resulting fibers, which are characterized by particularly high tensile strength values (525-750 MPa conditioned and 315-615 MPa wet) and elastic moduli between 10-26 GPa, were investigated by birefringence measurements, wide-angle X-ray scattering, and molar mass distribution techniques while their unique interactions with water have been studied through dynamic vapor sorption. Thus, an understanding of the novel process is gained, and the advantages are demonstrated for producing high-value products such as textiles, biocomposites, filters, and membranes.
  • Kakko, Tia; King, Alistair W. T.; Kilpeläinen, Ilkka (2017)
    Cellulose acetate is widely used in films, filters, textiles, lacquer and cosmetic products. Herein we demonstrate the production of cellulose esters under homogeneous conditions using 1,5-diazabicyclo[4.3.0]non-5-ene acetate ([DBNH][OAc]) as solvent. The reagents have been chosen such that the system is recyclable, i.e. by-products are low boiling and easy to remove. It is demonstrated that cellulose acetate can be synthesized with different degree of substitution (DS) values, and that some commonly used acylation regents, like vinyl carboxylates react well without additional base catalyst. Low to high DS values are possible with good recovery of high purity ionic liquid (IL). A linear correlation method of two separate methods, IR and P-31 NMR, is proposed to reliably assess the DS of the products. The recyclability of the solvent is demonstrated by acetylating cellulose with isopropenyl acetate to high degree and regeneration into water. After regeneration of cellulose acetate from the IL with addition of water, the residual water was entrained using n-butanol to minimize hydrolysis of [DBNH][OAc], to allow for high recovery and high purity of the ionic liquid. Thus, an overall scheme for batch cellulose acetylation and recovery of [DBNH][OAc] from aqueous solutions is proposed.
  • Dusa, Filip; Chen, Wen; Witos, Joanna; Rantamäki, Antti; King, Alistair; Sklavounos, Evangelos; Roth, Michal; Wiedmer, Susanne (2020)
    The cell membrane is mainly composed of lipid bilayers with inserted proteins and carbohydrates. Lipid bilayers made of purified or synthetic lipids are widely used for estimating the effect of target compounds on cell membranes. However, the composition of such biomimetic membranes is much simpler than the composition of biological membranes. Interactions between compounds and simple composition biomimetic membranes might not demonstrate the effect of target compounds as precisely as membranes with compositions close to real organisms. Therefore, the aim of our study is to construct biomimetic membrane closely mimicking the state of natural membranes. Liposomes were prepared from lipids extracted from L-alpha-phosphatidylcholine, Escherichia coli, yeast (Saccharomyces cerevisiae) and bovine liver cells through agitation and sonication. They were immobilized onto silicon dioxide (SiO2) sensor surfaces using N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid buffer with calcium chloride. The biomimetic membranes were successfully immobilized onto the SiO2 sensor surface and detected by nanoplasmonic sensing. The immobilized membranes were exposed to choline carboxylates. The membrane disruption effect was, as expected, more pronounced with increasing carbohydrate chain length of the carboxylates. The results correlated with the toxicity values determined using Vibrio fischeri bacteria. The yeast extracted lipid membranes had the strongest response to introduction of choline laurate while the bovine liver lipid extracted liposomes were the most sensitive towards the shorter choline carboxylates. This implies that the composition of the cell membrane plays a crucial role upon interaction with choline carboxylates, and underlines the necessity of testing membrane systems of different origin to obtain an overall image of such interactions.
  • Lan, Hangzhen; Salmi, Leo D.; Rönkkö, Tuukka; Parshintsev, Jevgeni; Jussila, Matti; Hartonen, Kari; Kemell, Marianna; Riekkola, Marja-Liisa (2018)
    New chemical vapor reaction (CVR) and atomic layer deposition (ALD)-conversion methods were utilized for preparation of metal organic frameworks (MOFs) coatings of solid phase microextraction (SPME) Arrow for the first time. With simple, easy and convenient one-step reaction or conversion, four MOF coatings were made by suspend ALD iron oxide (Fe2O3) film or aluminum oxide (Al2O3) film above terephthalic acid (H2BDC) or trimesic acid (H3BTC) vapor. UIO-66 coating was made by zirconium (Zr)-BDC film in acetic acid vapor. As the first documented instance of all-gas phase synthesis of SPME Arrow coatings, preparation parameters including CVR/conversion time and temperature, acetic acid volume, and metal oxide film/metal-ligand films thickness were investigated. The optimal coatings exhibited crystalline structures, excellent uniformity, satisfactory thickness (2-7.5 μm), and high robustness (>80 times usage). To study the practical usefulness of the coatings for the extraction, several analytes with different chemical properties were tested. The Fe-BDC coating was found to be the most selective and sensitive for the determination of benzene ring contained compounds due to its highly hydrophobic surface and unsaturated metal site. UIO-66 coating was best for small polar, aromatic, and long chain polar compounds owing to its high porosity. The usefulness of new coatings were evaluated for gas chromatography-mass spectrometer (GC-MS) determination of several analytes, present in wastewater samples at three levels of concentration, and satisfactory results were achieved.
  • King, Alistair William Thomas; Mäkelä, Arto Valtteri; Kedzior, Stephanie; Laaksonen, Tiina Marjukka; Partl, Gabriel Julian; Heikkinen, Sami Mikael; Koskela, Harri Tapani; Heikkinen, Harri August; Holding, Ashley; Cranston, Emily; Kilpeläinen, Ilkka Antero (2018)
    Recent developments in ionic liquid electrolytes for cellulose or biomass dissolution has also allowed for high-resolution 1H and 13C NMR on very high molecular weight cellulose. This permits the development of advanced liquid-state quantitative NMR methods for characterization of unsubstituted and low degree of substitution celluloses, for example, surface-modified nanocelluloses, which are insoluble in all molecular solvents. As such, we present the use of the tetrabutylphosphonium acetate ([P4444][OAc]):DMSO-d6 electrolyte in the 1D and 2D NMR characterization of poly(methyl methacrylate) (PMMA)-grafted cellulose nanocrystals (CNCs). PMMA-g-CNCs was chosen as a difficult model to study, to illustrate the potential of the technique. The chemical shift range of [P4444][OAc] is completely upfield of the cellulose backbone signals, avoiding signal overlap. In addition, application of diffusion-editing for 1H and HSQC was shown to be effective in the discrimination between PMMA polymer graft resonances and those from low molecular weight components arising from the solvent system. The bulk ratio of methyl methacrylate monomer to anhydroglucose unit was determined using a combination of HSQC and quantitative 13C NMR. After detachment and recovery of the PMMA grafts, through methanolysis, DOSY NMR was used to determine the average self-diffusion coefficient and, hence, molecular weight of the grafts compared to self-diffusion coefficients for PMMA GPC standards. This finally led to a calculation of both graft length and graft density using liquid-state NMR techniques. In addition, it was possible to discriminate between triads and tetrads, associated with PMMA tacticity, of the PMMA still attached to the CNCs (before methanolysis). CNC reducing end and sulfate half ester resonances, from sulfuric acid hydrolysis, were also assignable. Furthermore, other biopolymers, such as hemicelluloses and proteins (silk and wool), were found to be soluble in the electrolyte media, allowing for wider application of this method beyond just cellulose analytics.
  • Baddam, Vikram; Missonen, Reetta; Hietala, Sami; Tenhu, Heikki (2019)
    Mechanisms of the phase separation and remixing of cationic PEG-containing block copolymers have been investigated in aqueous lithium triflate solutions. The polycation was poly(vinylbenzyl trimethylammonium triflate). We have previously reported on one such block copolymer, which upon cooling of a hot clear solution first underwent phase separation into a turbid colloid and, later, partially cleared again with further cooling. To better understand the balance of various interactions in the solutions/dispersions, a series of polymers with varying DP of the cationic block was synthesized. From one of the polymers, the alkyl end group (a fragment of the chain transfer agent) was removed. The length of the cationic block affected critically the behavior, but the hydrophobic end group had a minimal effect. Polymers with a short cationic block turn cloudy and partially clear again during a temperature decrease, whereas those with a long cationic block phase separate and slowly precipitate and remix only when heated. Phase separation takes place via particle formation, and we suggest different mechanisms for colloidal stabilization of particles composed of short or long chains.
  • Dusa, Filip; Chen, Wen; Witos, Joanna Magdalena; Wiedmer, Susanne Kristina (2018)
    Nanoplasmonic sensing (NPS), based on localized surface plasmon resonance, with sensors composed of glass covered with golden nanodisks and overlaid with a SiO2 coating was applied in this study. Egg phosphatidylcholine (eggPC), being an easily accessible membrane-forming lipid, was used for preparation of biomimicking membranes. Small unilamellar vesicles with an approximate hydrodynamic diameter of 30 nm, formed by sonication in HEPES buffer, were adsorbed within 10 min on the sensor surface either as intact vesicles or as a planar bilayer. The adsorbed biomembrane systems were further utilized for interaction studies with four different well-known surfactants (negatively and positively charged, zwitterionic, and non-ionic) and each surfactant was tested at concentrations below and above the critical micelle concentration (CMC). Our results allowed the evaluation of different NPS patterns for every particular supported membrane system, surfactant, and its concentration. The most significant effect on the membrane was achieved upon the introduction of zwitterionic surfactant micelles, which in fact completely solubilized and removed the lipid membranes from the sensor surface. Other surfactant micelles interacted with the membranes and formed mixed structures remaining on the sensor surface. The studies performed at the concentrations below the CMCs of the surfactants showed that different mixed systems were formed. Depending on the supported membrane system and the type of surfactant, the mixed systems indicated different formation kinetics. Additionally, the final water rinse revealed the stability of the formed systems. To investigate the effect of the studied surfactants on the overall surface charge of the biomembrane, capillary electrophoresis (CE) experiments were carried out in parallel with the NPS analysis. The electroosmotic flow mobility of an eggPC-coated fused silica capillary was used to measure the total surface charge of the biomembrane after its treatment with the surfactants. Our results indicated in general good correlation between CE and NPS data. However, some discrepancies were seen while applying either zwitterionic or positively charged surfactants. This confirmed that CE analysis was able to provide additional data about the investigated systems. Taken together, the combination of NPS and CE proved to be an efficient way to describe the nature of interactions between biomimicking membranes and amphiphilic molecules.
  • Garemark, Jonas; Perea-Buceta, Jesus Enrique; Rico del Cerro, Daniel; Hall, Stephen; Berke, Barbara; Kilpeläinen, Ilkka; Berglund, Lars; Li, Yuanyuan (2022)
    Eco-friendly materials with superior thermal insulation and mechanical properties are desirable for improved energy- and space-efficiency in buildings. Cellulose aerogels with structural anisotropy could fulfill these requirements, but complex processing and high energy demand are challenges for scaling up. Here we propose a scalable, nonadditive, top-down fabrication of strong anisotropic aerogels directly from wood with excellent, near isotropic thermal insulation functions. The aerogel was obtained through cell wall dissolution and controlled precipitation in lumen, using an ionic liquid (IL) mixture comprising DMSO and a guanidinium phosphorus-based IL [MTBD][MMP]. The wood aerogel shows a unique structure with lumen filled with nanofibrils network. In situ formation of a cellulosic nanofibril network in the lumen results in specific surface areas up to 280 m2/g and high yield strengths >1.2 MPa. The highly mesoporous structure (average pore diameter ∼20 nm) of freeze-dried wood aerogels leads to low thermal conductivities in both the radial (0.037 W/mK) and axial (0.057 W/mK) directions, showing great potential as scalable thermal insulators. This synthesis route is energy efficient with high nanostructural controllability. The unique nanostructure and rare combination of strength and thermal properties set the material apart from comparable bottom-up aerogels. This nonadditive synthesis approach is believed to contribute significantly toward large-scale design and structure control of biobased aerogels.
  • Pyykkö, Pekka (2019)
    A simple formula is derived for the eutectic point of an A-B system in terms of the monomer melting points and melting enthalpies. This estimate is tested on several non-ionic or ionic systems, with or without common ions, including choline chloride/urea mixtures. The results are compared with the Schroder-van Laar equation.
  • Khanjani, Pegah; King, Alistair W. T.; Part, Gabriel J.; Johansson, Leena-Sisko; Kostiainen, Mauri A.; Ras, Robin H. A. (2018)
    The development of economically and ecologically viable strategies for sup erhydrophobization offers a vast variety of interesting applications in self-cleaning surfaces. Examples include packaging materials, textiles, outdoor clothing, and microfluidic devices. In this work, we produced superhydrophobic paper by spin-coating a dispersion of nanostructured fluorinated cellulose esters. Modification of cellulose nanocrystals was accomplished using 2H,2H,3H,3H-perfluorononanoyl chloride and 2H,2H,3H,3H-perfluoroundecanoyl chloride, which are well-known for their ability to reduce surface energy. A stable dispersion of nanospherical fluorinated cellulose ester was obtained by using the nanoprecipitation technique. The hydrophobized fluorinated cellulose esters were characterized by both solid- and liquid-state nuclear magnetic resonance, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and contact angle measurements. Further, we investigated the size, shape, and structure morphology of nanostructured fluorinated cellulose esters by dynamic light scattering, scanning electron microscopy, and X-ray diffraction measurements.
  • Laaksonen, Tiina; Heikkinen, Sami; Wähälä, Kristiina (2015)
    (+)-Dehydroabietylamine (1a), the novel derivatives (2a-6a) and their NTf2 salts (1b-6b) were tested as chiral NMR solvating agents for the resolution of enantiomers of the model compound Mosher's acid (7) and its n-Bu4N salt (8). Best enantiomeric discrimination of 7 was obtained using bisdehydroabietyl-amino-N-1, N-2-ethane-1,2-diamine (6a), and of 8 using N-(dehydroabietyl)-2-(dehydroabietylamino) ethanaminium bis((trifluoromethyl)-sulfonyl)-amide (6b). For the maximal resolution of enantiomers of 8, 1.0 eq. of 6b were needed. However, 0.5 eq. of 6a sufficed for the maximal resolution of enantiomers of 7. Enantiomeric excess studies were successfully conducted using 6a and 6b. The capability of 6a and 6b to recognize the enantiomers of various a-substituted carboxylic acids and their n-Bu4N salts were examined. Best resolutions were observed for aliphatic and aromatic carboxylic acids bearing an electronegative alpha-substituent. Now the ee studies on such non-aromatic carboxylic acids are also feasible.
  • Laaksonen, Tiina; Heikkinen, Sami; Wähälä, Kristiina (2015)
    Chiral tertiary and quaternary amine solvating agents for NMR spectroscopy were synthesized from the wood resin derivative (+)-dehydroabietylamine (2). The resolution of enantiomers of model compounds [Mosher's acid (3) and its n-Bu4N salt (4)] (guests) by (+)-dehydroabietyl-N,N-dimethylmethanamine (5) and its ten different ammonium salts (hosts) was studied. The best results with 3 were obtained using 5 while with 4 the best enantiomeric resolution was obtained using (+)-dehydroabietyl-N,N-dimethylmethanaminium bis(trifluoromethane-sulfonimide) (6). The compounds 5 and 6 showed a 1:1 complexation behaviour between the host and guest. The capability of 5 and 6 to recognize the enantiomers of various -substituted carboxylic acids and their n-Bu4N salts in enantiomeric excess (ee) determinations was demonstrated. A modification of the RES-TOCSY NMR pulse sequence is described, allowing the enhancement of enantiomeric discrimination when the resolution of multiplets is insufficient.