Browsing by Subject "IONOSPHERE"

Sort by: Order: Results:

Now showing items 1-6 of 6
  • Borovsky, Joseph E.; Osmane, Adnane (2019)
    Using the solar-wind-driven magnetosphere-ionosphere-thermosphere system, a methodology is developed to reduce a state-vector description of a time-dependent driven system to a composite scalar picture of the activity in the system. The technique uses canonical correlation analysis to reduce the time-dependent system and driver state vectors to time-dependent system and driver scalars, with the scalars describing the response in the system that is most-closely related to the driver. This reduced description has advantages: low noise, high prediction efficiency, linearity in the described system response to the driver, and compactness. The methodology identifies independent modes of reaction of a system to its driver. The analysis of the magnetospheric system is demonstrated. Using autocorrelation analysis, Jensen- Shannon complexity analysis, and permutation-entropy analysis the properties of the derived aggregate scalars are assessed and a new mode of reaction of the magnetosphere to the solar wind is found. This state-vector-reduction technique may be useful for other multivariable systems driven by multiple inputs.
  • George, Harriet E.; Rodger, Craig J.; Clilverd, Mark A.; Cresswell-Moorcock, Kathy; Brundell, James B.; Thomson, Neil R. (2019)
    A technique for analyzing very low frequency (VLF) radiowave signals is investigated in order to achieve rapid, real-time detection of large solar flares, through the monitoring of changes in VLF radio signal propagation conditions. The reliability of the use of VLF phase and amplitude perturbations to determine the X-ray fluxes involved during 10 large solar flare events (>X1) is examined. Linear regression analysis of signals from the NPM transmitter in Hawaii, received at Arrival Heights, Scott Base, Antarctica, over the years 2011-2015 shows that VLF phase perturbations during large solar flares have a 1.5-3 times lower mean square error when modeling the long wavelength X-ray fluxes than the equivalent short wavelength fluxes. The use of VLF amplitude observations to determine long or short wavelength X-ray flux levels have a 4-10 times higher mean square error than when using VLF phase. Normalized linear regression analysis identifies VLF phase as the most important parameter in the regression, followed by solar zenith angle at the midpoint of the propagation path, then the initial solar X-ray flux level (from 5 min before the impact of the solar flare), with F10.7 cm flux from the day beforehand providing the least important contribution. Transmitter phase measurements are more difficult to undertake than amplitude. However, networks of VLF receivers already exist which include the high quality phase capability required for such a nowcasting product. Such narrowband VLF data can be a redundant source of flare monitoring if satellite data is not available.
  • Myllys, M.; Henri, P.; Vallieres, X.; Gilet, N.; Nilsson, H.; Palmerio, E.; Turc, L.; Wellbrock, A.; Goldstein, R.; Witasse, O. (2021)
    Context. The Mutual Impedance Probe (RPC-MIP) carried by the Rosetta spacecraft monitored both the plasma density and the electric field in the close environment of comet 67P/Churyumov-Gerasimenko (67P), as the instrument was operating alternatively in two main modes: active and passive. The active mode is used primarily to perform plasma density measurements, while the passive mode enables the instrument to work as a wave analyzer. Aims. We are reporting electric field emissions at the plasma frequency near comet 67P observed by RPC-MIP passive mode. The electric field emissions are related to Langmuir waves within the cometary ionized environment. In addition, this study gives feedback on the density measurement capability of RPC-MIP in the presence of cold electrons. Methods. We studied the occurrence rate of the electric field emissions as well as their dependence on solar wind structures like stream interaction regions (SIRs) and coronal mass ejections (CMEs). Results. We are showing that strong electric field emissions at the plasma frequency near 67P were present sporadically throughout the period when Rosetta was escorting the comet, without being continuous, as the occurrence rate is reported to be of about 1% of all the measured RPC-MIP passive spectra showing strong electric field emissions. The Langmuir wave activity monitored by RPC-MIP showed measurable enhancements during SIR or CME interactions and near perihelion. Conclusions. According to our results, Langmuir waves are a common feature at 67P during the passage of SIRs. Comparing the plasma frequency given by the RPC-MIP passive mode during Langmuir wave periods with the RPC-MIP active mode observations, we conclude that the measurement accuracy of RPC-MIP depends on the operational submode when the cold electron component dominates the electron density.
  • Lakka, Antti; Pulkkinen, Tuija I.; Dimmock, Andrew P.; Kilpua, Emilia; Ala-Lahti, Matti; Honkonen, Ilja; Palmroth, Minna; Raukunen, Osku (2019)
    We study the response of the Earth's magnetosphere to fluctuating solar wind conditions during interplanetary coronal mass ejections (ICMEs) using the Grand Unified Magnetosphere-Ionosphere Coupling Simulation (GUMICS-4). The two ICME events occurred on 15-16 July 2012 and 29-30 April 2014. During the strong 2012 event, the solar wind upstream values reached up to 35 particles cm(-3), speeds of up to 694 km s(-1), and an interplanetary magnetic field of up to 22 nT, giving a Mach number of 2.3. The 2014 event was a moderate one, with the corresponding upstream values of 30 particles cm(-3), 320 km s(-1) and 10 nT, indicating a Mach number of 5.8. We examine how the Earth's space environment dynamics evolves during both ICME events from both global and local perspectives, using well-established empirical models and in situ measurements as references. We show that on the large scale, and during moderate driving, the GUMICS-4 results are in good agreement with the reference values. However, the local values, especially during high driving, show more variation: such extreme conditions do not reproduce local measurements made deep inside the magnetosphere. The same appeared to be true when the event was run with another global simulation. The cross-polar cap potential (CPCP) saturation is shown to depend on the Alfven-Mach number of the upstream solar wind. However, care must be taken in interpreting these results, as the CPCP is also sensitive to the simulation resolution.
  • Pulkkinen, T. I.; Partamies, N.; Kilpua, E. K. J. (2014)
  • Lakka, A.; Pulkkinen, T. I.; Dimmock, A. P.; Myllys, M.; Honkonen, I.; Palmroth, M. (2018)
    It is well known that the Earth's ionospheric cross-polar cap potential (CPCP) saturates as a response to the solar wind (SW) driver especially when the level of driving is high and the interplanetary magnetic field is oriented southward. Moreover, previous studies have shown that the upstream Alfven Mach number may be an important factor in the saturation effect. While the CPCP is often viewed as a measure of the SW-magnetosphere-ionosphere coupling, the processes associated with the nonlinearity of the coupling remain an open issue. We use fourth edition of the Grand Unified Magnetosphere-Ionosphere Coupling Simulation (GUMICS-4) and artificial SW data to mimic weak and strong driving in order to study the CPCP response to a wide range of interplanetary magnetic field magnitudes (3.5-30 nT) and upstream Alfven Mach number values (1.2-22). The results provide the first overview of the CPCP saturation in GUMICS-4 and show that the onset of saturation is strongly dependent on the upstream Alfven Mach number and the physical processes responsible for the saturation effect might take place both in the Earth's magnetosheath and in the upstream SW.