Browsing by Subject "ISOTOPE RATIOS"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Luoma, S.; Okkonen, J.; Korkka-Niemi, K.; Hendriksson, N.; Backman, B. (2015)
    The groundwater in a shallow, unconfined, low-lying coastal aquifer in Santala, southern Finland, was chemically characterised by integrating multivariate statistical approaches, principal component analysis (PCA) and hierarchical cluster analysis (HCA), based on the stable isotopes delta H-2 and delta O-18, hydrogeochemistry and field monitoring data. PCA and HCA yielded similar results and classified groundwater samples into six distinct groups that revealed the factors controlling temporal and spatial variations in the groundwater geochemistry, such as the geology, anthropogenic sources from human activities, climate and surface water. High temporal variation in groundwater chemistry directly corresponded to precipitation. With an increase in precipitation, KMnO4 consumption, EC, alkalinity and Ca concentrations also increased in most wells, while Fe, Al, Mn and SO4 were occasionally increased during spring after the snowmelt under specific geological conditions. The continued increase in NO3 and metal concentrations in groundwater indicates the potential contamination risk to the aquifer. Stable isotopes of delta O-18 and delta H-2 indicate groundwater recharge directly from meteoric water, with an insignificant contribution from lake water, and no seawater intrusion into the aquifer. Groundwater geochemistry suggests that local seawater intrusion is temporarily able to take place in the sulfate reduction zone along the freshwater and seawater mixed zone in the low-lying coastal area, but the contribution of seawater was found to be very low. The influence of lake water could be observed from higher levels of KMnO4 consumption in wells near the lake. The integration of PCA and HCA with conventional classification of groundwater types, as well as with the hydrogeochemical data, provided useful tools to identify the vulnerable groundwater areas representing the impacts of both natural and human activities on water quality and the understanding of complex groundwater flow system for the aquifer vulnerability assessment and groundwater management in the future.
  • Salminen-Paatero, Susanna; Vira, Julius; Paatero, Jussi (2020)
    The activity concentrations of Pu-238,Pu-239,Pu-240 and Am-241 (for determining its mother nuclide, Pu-241) as well as activity ratios of Pu-238/Pu239+240, Pu-241/Pu239+240 and Pu239+240/Cs-137 and the mass ratio of Pu-240/Pu-239 were determined from air filter samples collected in Rovaniemi (Finnish Lapland) in 1965 to 2011. The origin of plutonium in surface air was assessed based on these data from long time series. The most important Pu sources in the surface air of Rovaniemi were atmospheric nuclear-weapon testing in the 1950s and 1960s, later nuclear tests in 1973-1980 and the SNAP-9A satellite accident in 1964, whereas the influence from the 1986 Chernobyl accident was only minor. Contrary to the alpha-emitting Pu isotopes, Pu-241 from the Fukushima accident in 2011 was detected in Rovaniemi. Dispersion modeling results with the SILAM (System for Integrated modeLling of Atmospheric composition) model indicate that Pu contamination in northern Finland due to hypothetical reactor accidents would be negligible in the case of a floating reactor in the Shtokman natural gas field and relatively low in the case of an intended nuclear power plant in western Finland.
  • Rautio, A.; Kivimäki, A.-L.; Korkka-Niemi, K.; Nygård, M.; Salonen, V.-P.; Lahti, K.; Vahtera, H. (2015)
    A low-altitude aerial infrared (AIR) survey was conducted to identify hydraulic connections between aquifers and rivers and to map spatial surface temperature patterns along boreal rivers. In addition, the stable isotopic compositions (delta O-18, delta D), dissolved silica (DSi) concentrations and electrical conductivity of water in combination with AIR data were used as tracers to verify the observed groundwater discharge into the river system in a boreal catchment. Based on low temperature anomalies in the AIR survey, around 370 groundwater discharge sites were located along the main river channel and its tributaries (203 km altogether). On the basis of the AIR survey, the longitudinal temperature patterns of the studied rivers differed noticeably. The stable isotopes and DSi composition revealed major differences between the studied rivers. The groundwater discharge locations identified in the proximity of 12 municipal water intake plants during the low-flow seasons should be considered as potential risk areas for water intake plants during flood periods (groundwater quality deterioration due to bank infiltration), and should be taken under consideration in river basin management under changing climatic situations.