Browsing by Subject "In situ"

Sort by: Order: Results:

Now showing items 1-8 of 8
  • Talvenmaki, Harri; Saartama, Niina; Haukka, Anna; Lepikko, Katri; Pajunen, Virpi; Punkari, Milla; Yan, Guoyong; Sinkkonen, Aki; Piepponen, Tuomas; Silvennoinen, Hannu; Romantschuk, Martin (2021)
    A residential lot impacted by spills from a leaking light heating oil tank was treated with a combination of chemical oxidation and bioremediation to avoid technically challenging excavation. The tank left emptied in the ground was used for slow infiltration of the remediation additives to the low permeability, clayey soil. First, hydrogen peroxide and citrate chelate was added for Fenton's reaction-based chemical oxidation, resulting in a ca. 50% reduction from the initial 25,000 mg/kg average oil concentration in the soil below the tank. Part of this was likely achieved through mobilization of oily soil into the tank, which was beneficial in regards to the following biological treatment. By first adding live bacteria in a soil inoculum, and then oxygen and nutrients in different forms, an approximately 90% average reduction was achieved. To further enhance the effect, methyl-beta-cyclodextrin surfactant (CD) was added, resulting finally in a 98% reduction from the initial average level. The applicability of the surfactant was based on laboratory-scale tests demonstrating that CD promoted oil degradation and, unlike pine soap, was not utilized by the bacteria as a carbon source, and thus inhibiting degradation of oils regardless of the positive effect on biological activity. The effect of CD on water solubility for different hydrocarbon fractions was tested to serve as the basis for risk assessment requirements for authorizing the use of the surfactant at the site.
  • Cai, Zongping; Sun, Yan; Deng, Yanghong; Zheng, Xiaojie; Sun, Shuiyu; Romantschuk, Martin; Sinkkonen, Aki (2021)
    Electrokinetic (EK) remediation has been widely studied at laboratory scales. However, field-scale research is far less. In this study, a 14-day EK remediation was carried out, in a field pilot (4 m2) test and a full-scale (200 m2) application for the first time, in a cadmium (Cd) contaminated paddy agricultural field near a mining area. A low voltage of 20 V was applied at both scales; voltage gradient was 20 V m & minus;1 and 4 V m & minus;1 at the pilot and full scales, respectively. Samples were taken from near the anode and cathode, and in the middle of the electric field, in the soil layers 0-10 cm, 10-20 cm, and 40-50 cm. After the EK remediation, a significant portion of the total Cd was removed in all the layers at the pilot scale, by 87%, 72%, and 54% from the top down, but only in the 0-10 cm layer at the full scale by 74%. As for the plant available (exchangeable and soluble) Cd, significant removal (64%) was only observed in the 0-10 cm layer at the pilot scale. The percentage reduction of the electrical conductivity and removal efficiency of the total Cd was higher near the anode than the cathode. The soil pH was elevated near the cathode but stayed below pH 6 due to the sufficient supply of lactic acid. After the EK remediation, the concentration of the total Cd dropped below the hazard threshold, i.e. 0.4 mg (kg dry wt soil)& minus;1 for agricultural paddy fields in China. A total energy of 2 kW & middot;h and 0.6 kW & middot;h was consumed at the pilot and full scales, respec-tively. This study showed a successful in situ EK remediation of Cd contaminated paddy agricultural soil, espe-cially in the surface layer, with low voltage and energy demand. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  • Uusheimo, Sari Anneli; Tulonen, Tiina Valpuri; Aalto, Sanni L.; Arvola, Lauri Matti Juhani (2018)
    Constructed agricultural ponds and wetlands can reduce nitrogen loading from agriculture especially in areas where warm climate predominates. However, in cold climate temperature-dependency of microbiological processes have raised the question about the applicability of constructed wetlands in N removal. We measured in situ denitrification rates in a constructed agricultural pond using N-15-isotope pairing technique at ambient light and temperature throughout a year as well as diurnally. The field IPT measurements were combined with a wide set of potentially important explanatory data, including air temperature, photosynthetically active radiation, precipitation, discharge, nitrate plus other water quality variables, sediment temperature, oxygen concentration and penetration depth, diffusive oxygen uptake and sediment organic carbon. Denitrification varied, on average, diurnally between 12 and 314 mu mol N m(-2) h(-1) and seasonally between 0 and 12409 mu mol m(-2) h(-1). Light and oxygen regulated the diel variation of denitrification, but seasonally denitrification was governed by a combination of temperature, oxygen and turbidity. The results indicated that the real N removal rate might be 30-35% higher than the measured daytime rates, suggesting that neglecting the diel variation of denitrification we may underestimate N removal capacity of shallow sediments. We conclude, that by following recommended wetland:catchment - size ratios, boreal agricultural ponds can efficiently remove nitrogen by denitrification in summer and in autumn, while in winter and in spring the contribution of denitrification might be negligible relative to the loading, especially with short residence time.
  • Eriksson, Mats; Ämmälä, Kirsi; Levy, Isabelle; Gastaud, Janine; Lehto, Jukka; Scholten, Jan (2019)
    To analyze plutonium (Pu) in open ocean waters can be challenging due to the low seawater concentrations. In this study we compared two techniques for Pu determination, one in-situ MnO2 cartridge system and the more commonly used MnO2 precipitation technique. During the pre-pilot GEOTRACES cruise ANT XXX-1 (2005) we tested MnO2 cartridges for the pre-concentration of Pu from seawater at 19 sampling stations on a transect in the southeastern Atlantic Ocean between Vigo (Spain) and Cape Town (South Africa). Our in-situ sampling setup consisted of one particle cartridge followed by three MnO2 cartridges in a series. Through the system we pumped between 956 and 2700 I of surface seawater with a flow rate between 1.6 and 5.21/min. We found that the adsorption efficiency of a single MnO2 cartridge to adsorb Pu was rather constant and on average a 58 +/- 7%. The adsorption efficiency was also found to be independent of seawater: temperature in the range of 18.3-29.2 degrees C, salinity range 34.2-37.1 parts per thousand, and conductivity in the range of 46.8-58.4 mS/cm. In parallel with the in-situ sampling, discrete surface water samples between 259 and 281 I were taken and Pu was pre-concentrated using the MnO2 precipitation method. We find a good agreement between the Pu concentrations determined with the two different techniques. The in-situ pre-concentration technique requires more radiochemical work in the laboratory but has the advantage that large seawater volumes can be sampled without the necessity for radiochemical processing on-board the ship. The much larger volumes sampled with the in-situ technique compared with the precipitation technique, enables accurate determination of Pu-isotopic ratios with a low relative standard deviation. We have shown in this study that in-situ MnO2 cartridge technique can be used in a reliable way for the determination of dissolved Pu seawater concentration in open ocean waters.
  • Hyvärinen, Marko (2020)
    Rubus humulifolius is a Eurasian species that has got wide geographic distribution from western parts of Russia to Manchuria. The westernmost and separate population of R. humulifolius was found in Central Finland in 1917. The population was assumed to be formed via anthropogenic dispersal either in early nineteenth or early eighteenth century. In 20's the population was regarded as viable as it covered an area of a hectare almost as a monoculture in the field layer and it was protected by law in 1933. However, the state of the population started to decline in the same year as the area was ditched. In 1957 there were only fifteen rosettes left and five rosettes of were transplanted from the site to a private cottage garden just before the whole area was turned into a construction area and remaining population destroyed. The rescued population thrived but attempts to reintroduce plants from it to other sites considered to be suitable for the species were unsuccessful. Therefore, a research project initiated in 1986 for finding a suitable in vitro method for vegetative propagation of the plant. Eventually, the right formula for a substrate was found and 1500 new plants were produced in a couple of months. Now the in vitro propagated descendants of the five rescued ramets grow in several Finnish botanic gardens as part of their living collections and they also have been reintroduced to a natural site close to the original one in Central Finland. One can assume that a plant population that has gone through two bottlenecks-i.e. establishment of new population by presumably few long-distance dispersed genetic individuals and population decline to near extirpation -has got very narrow genetic diversity. Whether this is the case and whether inbreeding depression could explain e.g. the observed poor seed production in the population remains as a challenge for future research. Owing to ex situ conservation and in vitro technique applied for the first time to reintroduce an endangered species R. humulifolius is no more in immediate danger of extirpation. However, it is still classified as Critically Endangered (CR) as there is still only one population in the wild and it may be genetically depauperate.
  • Wang, Yunsheng; Kukko, Antero; Hyyppä, Eric; Hakala, Teemu; Pyörälä, Jiri; Lehtomäki, Matti; El Issaoui, Aimad; Yu, Xiaowei; Kaartinen, Harri; Liang, Xinlian; Hyyppä, Juha (2021)
    BackgroundCurrent automated forest investigation is facing a dilemma over how to achieve high tree- and plot-level completeness while maintaining a high cost and labor efficiency. This study tackles the challenge by exploring a new concept that enables an efficient fusion of aerial and terrestrial perspectives for digitizing and characterizing individual trees in forests through an Unmanned Aerial Vehicle (UAV) that flies above and under canopies in a single operation. The advantage of such concept is that the aerial perspective from the above-canopy UAV and the terrestrial perspective from the under-canopy UAV can be seamlessly integrated in one flight, thus grants the access to simultaneous high completeness, high efficiency, and low cost.ResultsIn the experiment, an approximately 0.5ha forest was covered in ca. 10min from takeoff to landing. The GNSS-IMU based positioning supports a geometric accuracy of the produced point cloud that is equivalent to that of the mobile mapping systems, which leads to a 2-4cm RMSE of the diameter at the breast height estimates, and a 4-7cm RMSE of the stem curve estimates.ConclusionsResults of the experiment suggested that the integrated flight is capable of combining the high completeness of upper canopies from the above-canopy perspective and the high completeness of stems from the terrestrial perspective. Thus, it is a solution to combine the advantages of the terrestrial static, the mobile, and the above-canopy UAV observations, which is a promising step forward to achieve a fully autonomous in situ forest inventory. Future studies should be aimed to further improve the platform positioning, and to automatize the UAV operation.
  • Wang, Yunsheng; Kukko, Antero; Hyyppä, Eric; Hakala, Teemu; Pyörälä, Jiri; Lehtomäki, Matti; El Issaoui, Aimad; Yu, Xiaowei; Kaartinen, Harri; Liang, Xinlian; Hyyppä, Juha (Springer Singapore, 2021)
    Abstract Background Current automated forest investigation is facing a dilemma over how to achieve high tree- and plot-level completeness while maintaining a high cost and labor efficiency. This study tackles the challenge by exploring a new concept that enables an efficient fusion of aerial and terrestrial perspectives for digitizing and characterizing individual trees in forests through an Unmanned Aerial Vehicle (UAV) that flies above and under canopies in a single operation. The advantage of such concept is that the aerial perspective from the above-canopy UAV and the terrestrial perspective from the under-canopy UAV can be seamlessly integrated in one flight, thus grants the access to simultaneous high completeness, high efficiency, and low cost. Results In the experiment, an approximately 0.5 ha forest was covered in ca. 10 min from takeoff to landing. The GNSS-IMU based positioning supports a geometric accuracy of the produced point cloud that is equivalent to that of the mobile mapping systems, which leads to a 2–4 cm RMSE of the diameter at the breast height estimates, and a 4–7 cm RMSE of the stem curve estimates. Conclusions Results of the experiment suggested that the integrated flight is capable of combining the high completeness of upper canopies from the above-canopy perspective and the high completeness of stems from the terrestrial perspective. Thus, it is a solution to combine the advantages of the terrestrial static, the mobile, and the above-canopy UAV observations, which is a promising step forward to achieve a fully autonomous in situ forest inventory. Future studies should be aimed to further improve the platform positioning, and to automatize the UAV operation.
  • Antila, Hanna; Autio, Henri; Turunen, Laura; Harju, Kirsi; Tammela, Paivi; Wennerberg, Krister; Yli-Kauhaluoma, Jari; Huttunen, Henri J.; Castren, Eero; Rantamaki, Tomi (2014)