Browsing by Subject "Inheritance"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Poczai, Péter; Santiago-Blay, Jorge (2021)
    The knowledge of the history of a subject stimulates understanding. As we study how other people have made scientific breakthroughs, we develop the breadth of imagination that would inspire us to make new discoveries of our own. This perspective certainly applies to the teaching of genetics as hallmarked by the pea experiments of Mendel. Common questions students have in reading Mendel's paper for the first time is how it compares to other botanical, agricultural, and biological texts from the early and mid-nineteenth centuries; and, more precisely, how Mendel's approach to, and terminology for debating, topics of heredity compare to those of his contemporaries? Unfortunately, textbooks are often unavailing in answering such questions. It is very common to find an introduction about heredity in genetic textbooks covering Mendel without mentions of preceding breeding experiments carried out in his alma mater. This does not help students to understand how Mendel came to ask the questions he did, why he did, or why he planned his pea studies the way he did. Furthermore, the standard textbook "sketch" of genetics does not allow students to consider how discoveries could have been framed and inspired so differently in various parts of the world within a single historical time. In our review we provide an extended overview bridging this gap by showing how different streams of ideas lead to the eventual foundation of particulate inheritance as a scientific discipline. We close our narrative with investigations on the origins of animal and plant breeding in Central Europe prior to Mendel in Koszeg and Brno, where vigorous debates touched on basic issues of heredity from the early eighteenth-century eventually reaching a pinnacle coining the basic questions: What is inherited and how is it passed on from one generation to another?
  • Chen, Li; Ling, Karen Tan Mei; Gong, Min; Chong, Mary F. F.; Tan, Kok Hian; Chong, Yap Seng; Meaney, Michael J.; Gluckman, Peter D.; Eriksson, Johan G.; Karnani, Neerja (2022)
    Background: Telomere length (TL) and its attrition are important indicators of physiological stress and biological aging and hence may vary among individuals of the same age. This variation is apparent even in newborns, suggesting potential effects of parental factors and the intrauterine environment on TL of the growing fetus. Methods: Average relative TLs of newborns (cord tissue, N = 950) and mothers (buffy coat collected at 26-28 weeks of gestation, N = 892) were measured in a birth cohort. This study provides a comprehensive analysis of the effects of heritable factors, socioeconomic status, and in utero exposures linked with maternal nutrition, cardiometabolic health, and mental well-being on the newborn TL. The association between maternal TL and antenatal maternal health was also studied. Results: Longer maternal TL (beta = 0.14, P = 1.99E-05) and higher paternal age (beta = 0.10, P = 3.73E-03) were positively associated with newborn TL. Genome-wide association studies on newborn and maternal TLs identified 6 genetic variants in a strong linkage disequilibrium on chromosome 3q26.2 (Tag SNP-LRRC34-rs10936600: P-meta = 5.95E-08). Mothers with higher anxiety scores, elevated fasting blood glucose, lower plasma insulin-like growth factor-binding protein 3 and vitamin B12 levels, and active smoking status during pregnancy showed a higher risk of giving birth to offspring with shorter TL. There were sex-related differences in the factors explaining newborn TL variation. Variation in female newborn TL was best explained by maternal TL, mental health, and plasma vitamin B12 levels, while that in male newborn TL was best explained by paternal age, maternal education, and metabolic health. Mother's TL was associated with her own metabolic health and nutrient status, which may have transgenerational effects on offspring TL. Conclusions: Our findings provide a comprehensive understanding of the heritable and environmental factors and their relative contributions to the initial setting of TL and programing of longevity in early life. This study provides valuable insights for preventing in utero telomere attrition by improving the antenatal health of mothers via targeting the modifiable factors.
  • Wiberg, M.; Niskanen, J.E.; Hytönen, M.; Dillard, K.; Hagner, K.; Anttila, M.; Lohi, H. (2020)
    Introduction: To describe unexpected sudden cardiac death (SCD) in young Leonbergers ( Animals: Postmortem evaluations included 21 Leonbergers. Clinical evaluation consisted of 46 apparently healthy Leonbergers with and without a close family history of SCD. Materials and methods: Necropsy reports were reviewed retrospectively. Prospective clinical evaluation included physical examination, 5-min electrocardiogram, 24-h Hotter, echocardiography, and laboratory tests. Pedigree data were examined for mode of inheritance. Results: Based on necropsy reports, SCD occurred at a median age of 12 months (range, 2.0-32.0 months) without any previous clinical signs and usually in rest. No evidence of structural cardiac disease was found; arrhythmia-related death was suspected. Clinical evaluation and 24-h Hotter showed ventricular arrhythmia (VA) in 14 apparently healthy Leonbergers (median age, 18 months; range, 12-42 months). Severity of VA varied from infrequent couplets/triplets to frequent complexity (couplets, triplets, nonsustained ventricular tachycardias,VTs) characterized by polymorphology. During follow-up, two dogs with polymorphic VT died. Although breed specificity and high prevalence indicate a heritable disease, based on available pedigree data, the mode of inheritance could not be determined. Conclusions: Sudden cardiac death in young Leonbergers is associated with malignant VA characterized by complexity and polymorphic nature. Diagnosis is based on 24-h Hotter monitoring. Pedigree analysis suggests that the arrhythmia is familial. (C) 2019 Elsevier B.V. All rights reserved.