Browsing by Subject "Inorganic Materials Chemistry"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Heczko, Vilma (Helsingin yliopisto, 2021)
    Plasmonic catalysis utilises light energy to drive chemical reactions. Compared to conventional catalytic processes, which are run by high temperatures and pressures, light-driven processes can lower energy consumption and increase selectivity. Conventional plasmonic nanoparticles (Ag, Au) are relatively scarce and expensive, and therefore the use of materials with earth-abundant elements in plasmonic catalysis is widely pursued. Despite their good optical properties, plasmonic nanoparticles are often unsuitable catalysts. Hybrid catalysts, structures consisting of a light-harvesting plasmonic part and a catalytical centre of different material, have emerged as an opportunity to address these challenges and obtain desired properties. This thesis consists of two parts: In the first part, properties of plasmonic materials are described, and previous studies of hybrid catalysts with earth-abundant plasmonic materials are reviewed. Experimental work on plasmonic-catalytic nanohybrids, with TiN as the plasmonic part and Pd as the catalytic entity, is described in the second part. In this context, a Pd/TiN (Pd nanoparticles supported into TiN) catalyst was synthesised, characterised and applied to test catalytical reactions. Contrary to the hypothesis, light-induced rate enhancement was not observed in our current catalytical studies. These results call for further optimisation of synthesis and reaction conditions to prepare an earth-abundant, light-active catalyst.
  • Keränen, Laura (Helsingin yliopisto, 2021)
    Tutkielman kirjallisuusosassa tarkastellaan johtavien metalli-, oksidi- ja nitridikalvojen kasvattamista epitaksiaalisesti strontiumtitanaatille. Epitaksiaalisia kalvoja on kasvatettu fysikaalisilla kasvatusmenetelmillä, kuten laserpulssikasvatuksella, elektronisuihkuhöyrystyksellä ja sputteroimalla, sekä kemiallisilla kasvatusmenetelmillä, kuten atomikerroskasvatuksella, sooli-geeli-menetelmällä sekä metalliorgaanisella kemiallisella kaasufaasikasvatuksella. Useiden tekijöiden, kuten substraattien lämpötilan ja esikäsittelyn todettiin vaikuttavan kalvojen orientaatioon. Kokeellisessa osassa iridium- ja platinaohutkalvoja kasvatettiin (100)-orientoiduille strontiumtitanaattisubstraateille atomikerroskasvatuksella. Iridiumkalvojen lähtöaineina käytettiin iridiumasetyyliasetonaattia sekä happea tai otsonia ja vetyä. Platinakalvojen lähtöaineina käytettiin platina-asetyyliasetonaattia, otsonia ja vetyä tai metyylisyklopentadienyylitrimetyyliplatinaa ja happea. Kalvojen rakennetta ja tekstuuria tutkittiin θ-2θ- ja in plane -röntgendiffraktiolla. Osaa iridiumkalvojen poikkileikkauksista tutkittiin myös läpäisyelektronimikroskopialla. Iridiumkalvojen todettiin olevan vahvasti (100)-orientoituneita, mutta monikiteisiä. Platinan (h00)-piikkejä ei kyetty erottamaan substraatin (h00)-piikeistä, mutta vahvojen (111)-piikkien perusteella kalvot eivät olleet epitaksiaalisia. Kalvojen kuumentaminen lisäsi (111)-orientaatiota molemmissa metalleissa.
  • Otaki, Miho (Helsingin yliopisto, 2019)
    In terms of nuclear waste management, the behavior of radionuclides with long half-lives, such as I-129, is of special concern especially for the final depository of nuclear waste. In addition, generally speaking, iodine is highly mobile and easily transferable to the natural environment. Furthermore, because iodine is an essential element for the synthesis of thyroid hormones, it accumulates in the human thyroid. Thus, radioactive iodine can also be the greatest potential danger of dose uptake for humans. Among many kinds of iodine species, it is rather challenging to separate iodate selectively from other anions and thus it is necessary to investigate new materials which can adsorb iodate efficiently for the removal of radioactive iodine. In this study, the iodate adsorption ability of hydrous zirconia has been investigated. Hydrous zirconia has been reported as an anion-exchanger, and because of its stability, this material is a promising candidate for selective iodate removal from radioactive waste solutions. White solid of hydrous zirconia was successfully synthesized with an amorphous structure. Its surface showed a character in between amphoteric and basic. The isotherm indicated that the material has a preference to adsorb iodate and the saturation value of adsorption was estimated to 1.8 mmol/g. The material showed lower uptakes as pH got higher. Among several competing anions tested, divalent sulphate ions suppressed the iodate adsorption to some extent due to higher affinity to the material surface. In a basic environment, boric acid also suppressed strongly the adsorption probably because of the formation of tetrahydroxyborate with hydroxide sites on the material surface. These suppressions of iodate adsorption became stronger as the concentration got higher. Post-heating at 400 °C resulted in the transformation of the material structure to tetragonal and a slight improvement of iodate adsorption rate. As the temperature of post-heating got higher, the structure became more monoclinic and showed the lower uptakes, which may be due to the loss of hydroxide sites. A column setup of the material with simulant of wastewater from Fukushima Daiichi Nuclear Power Plant has been operating and approximately 11,000 bed-volume of the solution has been gone through, but still, the column is yet to reach a 100% breakthrough. Based on the results presented in this study, it can be concluded that synthesized hydrous zirconia showed clear iodate preference and a possible high performance for the waste treatment from nuclear power plants.