Browsing by Subject "Instrumentation"

Sort by: Order: Results:

Now showing items 1-6 of 6
  • Vazquez, L; Harri, A-M; Genzer, M (Finnish Meteorological Institute, 2017)
    Raportteja – Rapporter – Reports 2017:5
    The “ExoMars Atmospheric Science and Missions” Workshop served as a forum for general discussions on Martian atmospheric science with a focus on the assessment of the results and instrumentation development cycle of the ExoMars 2016 mission. These led to presentations and discussions of the atmospheric investigation plans and strategies for the ESA ExoMars-2020 mission in particular and for forthcoming Mars missions in general. The workshop gave overviews of the ExoMars atmospheric investigations through invited talks by Exomars scientists. The ExoMars atmospheric results and planned investigations were covered by individual scientific presentations. The workshop engaged early career scientists, inclusiveness states and scientific and technological cooperation in the European planetary science community. The Workshop provided a forum for discussion and debate on the outstanding scientific topics of the Martian atmosphere, and on how to integrate and network the scientific teams with providers of instruments and technical systems. Thus the workshop also contributed to international cooperation in the field of Martian atmospheric science and technology.
  • Koponen, Lari M.; Nieminen, Jaakko O.; Ilmoniemi, Risto J. (2018)
    Background: Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation method: a magnetic field pulse from a TMS coil can excite neurons in a desired location of the cortex. Conventional TMS coils cause focal stimulation underneath the coil centre; to change the location of the stimulated spot, the coil must be moved over the new target. This physical movement is inherently slow, which limits, for example, feedback-controlled stimulation. Objective: To overcome the limitations of physical TMS-coil movement by introducing electronic targeting. Methods: We propose electronic stimulation targeting using a set of large overlapping coils and introduce a matrix-factorisation-based method to design such sets of coils. We built one such device and demonstrated the electronic stimulation targeting in vivo. Results: The demonstrated two-coil transducer allows translating the stimulated spot along a 30-mmlong line segment in the cortex; with five coils, a target can be selected from within a region of the cortex and stimulated in any direction. Thus, far fewer coils are required by our approach than by previously suggested ones, none of which have resulted in practical devices. Conclusion: Already with two coils, we can adjust the location of the induced electric field maximum along one dimension, which is sufficient to study, for example, the primary motor cortex. (C) 2018 The Author(s). Published by Elsevier Inc.
  • Kangasluoma, Juha; Cai, Runlong; Jiang, Jingkun; Deng, Chenjuan; Stolzenburg, Dominik; Ahonen, Lauri R.; Chan, Tommy; Fu, Yueyun; Kim, Changhyuk; Laurila, Tiia M.; Zhou, Ying; Dada, Lubna; Sulo, Juha; Flagan, Richard C.; Kulmala, Markku; Petaja, Tuukka; Lehtipalo, Katrianne (2020)
    Interest in understanding gas-to-particle phase transformation in several disciplines such as at-mospheric sciences, material synthesis, and combustion has led to the development of several distinct instruments that can measure the particle size distributions down to the sizes of large molecules and molecular clusters, at which the initial particle formation and growth takes place. These instruments, which include the condensation particle counter battery, a variety of electrical mobility spectrometers and the particle size magnifier, have been usually characterized in lab-oratory experiments using carefully prepared calibration aerosols. They are then applied, alone or in combination, to study the gas-to-particle transition in experiments that produce particles with a wide range of compositions and other properties. Only a few instrument intercomparisons in either laboratory or field conditions have been reported, raising the question: how accurately can the sub-10 nm particle number size distributions be measured with the currently available instrumentation? Here, we review previous studies in which sub-10 nm particle size distributions have been measured with at least two independent instruments. We present recent data from three sites that deploy the current state-of-the-art instrumentation: Hyytiala, Beijing, and the CLOUD chamber. After discussing the status of the sub-10 nm size distribution measurements, we present a comprehensive uncertainty analysis for these methods that suggests that our present understanding on the sources of uncertainties quite well captures the observed deviations be-tween different instruments in the size distribution measurements. Finally, based on present understanding of the characteristics of a number of systems in which gas-to-particle conversion takes place, and of the instrumental limitations, we suggest guidelines for selecting suitable in-struments for various applications.
  • Huovelin, J.; Vainio, R.; Kilpua, E.; Lehtolainen, A.; Korpela, S.; Esko, E.; Muinonen, K.; Bunce, E.; Martindale, A.; Grande, M.; Andersson, H.; Nenonen, S.; Lehti, J.; Schmidt, W.; Genzer, M.; Vihavainen, T.; Saari, J.; Peltonen, J.; Valtonen, E.; Talvioja, M.; Portin, P.; Narendranath, S.; Järvinen, R.; Okada, T.; Milillo, A.; Laurenza, M.; Heino, E.; Oleynik, P. (2020)
    The Solar Intensity X-ray and particle Spectrometer (SIXS) on the BepiColombo Mercury Planetary Orbiter ("Bepi") measures the direct solar X-rays, energetic protons, and electrons that bombard, and interact with, the Hermean surface. The interactions result in X-ray fluorescence and scattering, and particle induced X-ray emission (PIXE), i.e. "glow" of the surface in X-rays. Simultaneous monitoring of the incident and emitted radiation enables derivation of the abundances of some chemical elements and scattering properties of the outermost surface layer of the planet, and it may reveal other sources of X-ray emission, due to, for example, weak aurora-like phenomena in Mercury's exosphere. Mapping of the Hermean X-ray emission is the main task of the MIXS instrument onboard BepiColombo. SIXS data will also be used for investigations of the solar X-ray corona and solar energetic particles (SEP), both in the cruise phase and the passes of the Earth, Venus and Mercury before the arrival at Mercury's orbit, and the final science phase at Mercury's orbit. These observations provide the first-ever opportunity for in-situ measurements of the propagation of SEPs, their interactions with the interplanetary magnetic field, and space weather phenomena in multiple locations throughout the inner solar system far away from the Earth, and more extensively at Mercury's orbit. In this paper we describe the scientific objectives, design and calibrations, operational principles, and scientific performance of the final SIXS instrument launched to the mission to planet Mercury onboard BepiColombo. We also provide the first analysis results of science observations with SIXS, that were made during the Near-Earth Commissioning Phase and early cruise phase operations in 2018-19, including the background X-ray sky observations and "first light" observations of the Sun with the SIXS X-ray detection system (SIXS-X), and in-situ energetic electron and proton observations with the SIXS Particle detection system (SIXS-P).
  • Barret, Didier; Thien Lam Trong; den Herder, Jan-Willem; Piro, Luigi; Cappi, Massimo; Huovelin, Juhani; Kelley, Richard; Mas-Hesse, J. Miguel; Mitsuda, Kazuhisa; Paltani, Stephane; Rauw, Gregor; Rozanska, Agata; Wilms, Joern; Bandler, Simon; Barbera, Marco; Barcons, Xavier; Bozzo, Enrico; Ceballos, Maria Teresa; Charles, Ivan; Costantini, Elisa; Decourchelle, Anne; den Hartog, Roland; Duband, Lionel; Duval, Jean-Marc; Fiore, Fabrizio; Gatti, Flavio; Goldwurm, Andrea; Jackson, Brian; Jonker, Peter; Kilbourne, Caroline; Macculi, Claudio; Mendez, Mariano; Molendi, Silvano; Orleanski, Piotr; Pajot, Francois; Pointecouteau, Etienne; Porter, Frederick; Pratt, Gabriel W.; Prele, Damien; Ravera, Laurent; Sato, Kosuke; Schaye, Joop; Shinozaki, Keisuke; Thibert, Tanguy; Valenziano, Luca; Valette, Veronique; Vink, Jacco; Webb, Natalie; Wise, Michael; Yamasaki, Noriko; Delcelier-Douchin, Francoise; Mesnager, Jean-Michel; Pontet, Bernard; Pradines, Alice; Branduardi-Raymont, Graziella; Bulbul, Esra; Dadina, Mauro; Ettori, Stefano; Finoguenov, Alexis; Fukazawa, Yasushi; Janiuk, Agnieszka; Kaastra, Jelle; Mazzotta, Pasquale; Miller, Jon; Miniutti, Giovanni; Naze, Yael; Nicastro, Fabrizio; Sciortino, Salvatore; Simionescu, Aurora; Torrejon, Jose Miguel; Geoffray, Herve; Peille, Philippe; Aicardi, Corinne; Andre, Jerome; Garrido, Gonzalo Campos; Clenet, Antoine; Daniel, Christophe; Etcheverry, Christophe; Frezouls, Benot; Gloaguen, Emilie; Hervet, Gilles; Jolly, Antoine; Ledot, Aurelien; Maussang, Irwin; Paillet, Alexis; Schmisser, Roseline; Travert, Jean-Michel; Vella, Bruno; Damery, Jean-Charles; Boyce, Kevin; DiPirro, Michael; Lotti, Simone; Schwander, Denis; Smith, Stephen; van Leeuwen, Bert-Joost; van Weers, Henk; Clerc, Nicolas; Cobo, Beatriz; Dauser, Thomas; de Plaa, Jelle; Kirsch, Christian; Cucchetti, Edoardo; Eckart, Megan; Ferrando, Philippe; Natalucci, Lorenzo (SPIE - the international society for optics and photonics, 2018)
    Proceedings of SPIE
    The X-ray Integral Field Unit (X-IFU) is the high resolution X-ray spectrometer of the ESA Athena X-ray observatory. Over a field of view of 5' equivalent diameter, it will deliver X-ray spectra from 0.2 to 12 keV with a spectral resolution of 2.5 eV up to 7 keV on similar to 5 '' pixels. The X-IFU is based on a large format array of super-conducting molybdenum-gold Transition Edge Sensors cooled at similar to 90 mK, each coupled with an absorber made of gold and bismuth with a pitch of 249 mu m. A cryogenic anti-coincidence detector located underneath the prime TES array enables the non X-ray background to be reduced. A bath temperature of similar to 50 mK is obtained by a series of mechanical coolers combining 15K Pulse Tubes, 4K and 2K Joule-Thomson coolers which pre-cool a sub Kelvin cooler made of a He-3 sorption cooler coupled with an Adiabatic Demagnetization Refrigerator. Frequency domain multiplexing enables to read out 40 pixels in one single channel. A photon interacting with an absorber leads to a current pulse, amplified by the readout electronics and whose shape is reconstructed on board to recover its energy with high accuracy. The defocusing capability offered by the Athena movable mirror assembly enables the X-IFU to observe the brightest X-ray sources of the sky (up to Crab-like intensities) by spreading the telescope point spread function over hundreds of pixels. Thus the X-IFU delivers low pile-up, high throughput (> 50%), and typically 10 eV spectral resolution at 1 Crab intensities, i.e. a factor of 10 or more better than Silicon based X-ray detectors. In this paper, the current X-IFU baseline is presented, together with an assessment of its anticipated performance in terms of spectral resolution, background, and count rate capability. The X-IFU baseline configuration will be subject to a preliminary requirement review that is scheduled at the end of 2018. The X-IFU will be provided by an international consortium led by France, the Netherlands and Italy, with further ESA member state contributions from Belgium, Czech Republic, Finland, Germany, Ireland, Poland, Spain, Switzerland and contributions from Japan and the United States.
  • Waldén, Jari; Vestenius, Mika (2018)
    Raportteja - Rapporter - Reports 2018:2
    The Air Quality Directive, AQD, (2008/50/EC), set up the rules concerning the reference methods (RM) for the measurements of e.g. mass concentration of particulate matter in air. A member state (MS) can use any other method, which it can demonstrate to display a consistent relationship with the reference method. Demonstration of equivalence (DoE) for automated continuous monitoring systems (AMS) for determination of the PM2.5 and PM10 mass concentration of suspended particulate matter was conducted in Finland at the city of Kuopio during 2014-15 (Walden et al., 2017). The tested AMS were used in Finland at the local air quality networks for controlling the limit values for PM2.5 and PM10 mass concentration measurements. The purpose of the verification exercise was to demonstrate whether the AMS tested and approved during the DoE study in Kuopio are applicable elsewhere in Finland. The comparison of the AMS of the local network (site) with the RM was performed in various parts of Finland (south and north, east and west) to see if the AMS, which was approved as equivalence method still fulfills the suitability criteria elsewhere in Finland. Verification campaigns took place at eight measurement sites of different local air quality networks in Finland either for PM2.5 or PM10 measurements. AMS whose DoE was approved were: FH62-IR, Grimm model 180, MP101 CPM, Osiris, SHARP model 5030 and TEOM 1405. Additionally TEOM 1405D and APM-2 were tested for verification, though they did not participate in the DoE tests in Kuopio, but are used at some of the networks. The test strategy was modified from the relevant EN-standard for using the AMS for measurements of PM2.5 and PM10 concentrations in ambient air. This strategy enabled to include more sites and tested instruments into the study but with lack of less seasonality than would have been needed by following the guide accurately. As a result of the verification study the calibration factors achieved at DoE in Kuopio are applicable for the same model of AMS tested in Kuopio in different locations in Finland with few limitations. The FH62-IR made better performance by using the calibration factor obtained in this study in Helsinki than based on the DoE in Kuopio. Osiris passed the test for PM10 but not for PM2.5 measurements just like in Kuopio. APM-2 has been tested by Rheinland Energie und Umwelt GmbH, TÜV that is accredited testing laboratory and found to be equivalent with the reference method both for PM2.5 and for PM10 measurements. Based on the test results by TÜV and the verification results achieved in this study, the APM-2 can be used for PM2.5 and for PM10 measurements in Finland, but applying the calibration factors obtained in this study. TEOM 1405D has not been tested for DoE and cannot be claimed equivalent to reference method. Therefore calibration factors obtained in this study cannot be used for TEOM 1405D.