Browsing by Subject "InvaCost"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Haubrock, Phillip J.; Turbelin, Anna J.; Cuthbert, Ross N.; Novoa, Ana; Taylor, Nigel G.; Angulo, Elena; Ballesteros-Mejia, Liliana; Bodey, Thomas W.; Capinha, Cesar; Diagne, Christophe; Essl, Franz; Golivets, Marina; Kirichenko, Natalia; Kourantidou, Melina; Leroy, Boris; Renault, David; Verbrugge, Laura; Courchamp, Franck (2021)
    Biological invasions continue to threaten the stability of ecosystems and societies that are dependent on their services. Whilst the ecological impacts of invasive alien species (IAS) have been widely reported in recent decades, there remains a paucity of information concerning their economic impacts. Europe has strong trade and transport links with the rest of the world, facilitating hundreds of IAS incursions, and largely centralised decision-making frameworks. The present study is the first comprehensive and detailed effort that quantifies the costs of IAS collectively across European countries and examines temporal trends in these data. In addition, the distributions of costs across countries, socioeconomic sectors and taxonomic groups are examined, as are socio-economic correlates of management and damage costs. Total costs of IAS in Europe summed to US$140.20 billion (or euro116.61 billion) between 1960 and 2020, with the majority (60%) being damage-related and impacting multiple sectors. Costs were also geographically widespread but dominated by impacts in large western and central European countries, i.e. the UK, Spain, France, and Germany. Human population size, land area, GDP, and tourism were significant predictors of invasion costs, with management costs additionally predicted by numbers of introduced species, research effort and trade. Temporally, invasion costs have increased exponentially through time, with up to US$23.58 billion (euro19.64 billion) in 2013, and US$139.56 billion (euro116.24 billion) in impacts extrapolated in 2020. Importantly, although these costs are substantial, there remain knowledge gaps on several geographic and taxonomic scales, indicating that these costs are severely underestimated. We, thus, urge increased and improved cost reporting for economic impacts of IAS and coordinated international action to prevent further spread and mitigate impacts of IAS populations.
  • Cuthbert, Ross N.; Pattison, Zarah; Taylor, Nigel G.; Verbrugge, Laura; Diagne, Christophe; Ahmed, Danish A.; Leroy, Boris; Angulo, Elena; Briski, Elizabeta; Capinha, Cesar; Catford, Jane A.; Dalu, Tatenda; Essl, Franz; Gozlan, Rodolphe E.; Haubrock, Phillip J.; Kourantidou, Melina; Kramer, Andrew M.; Renault, David; Wasserman, Ryan J.; Courchamp, Franck (2021)
    Much research effort has been invested in understanding ecological impacts of invasive alien species (IAS) across ecosystems and taxonomic groups, but empirical studies about economic effects lack synthesis. Using a comprehensive global database, we determine patterns and trends in economic costs of aquatic IAS by examining: (i) the distribution of these costs across taxa, geographic regions and cost types; (ii) the temporal dynamics of global costs; and (iii) knowledge gaps, especially compared to terrestrial IAS. Based on the costs recorded from the existing literature, the global cost of aquatic IAS conservatively summed to US$345 billion, with the majority attributed to invertebrates (62%), followed by vertebrates (28%), then plants (6%). The largest costs were reported in North America (48%) and Asia (13%), and were principally a result of resource damages (74%); only 6% of recorded costs were from management. The magnitude and number of reported costs were highest in the United States of America and for semi-aquatic taxa. Many countries and known aquatic alien species had no reported costs, especially in Africa and Asia. Accordingly, a network analysis revealed limited connectivity among countries, indicating disparate cost reporting. Aquatic IAS costs have increased in recent decades by several orders of magnitude, reaching at least US$23 billion in 2020. Costs are likely considerably underrepresented compared to terrestrial IAS; only 5% of reported costs were from aquatic species, despite 26% of known invaders being aquatic. Additionally, only 1% of aquatic invasion costs were from marine species. Costs of aquatic IAS are thus substantial, but likely underreported. Costs have increased over time and are expected to continue rising with future invasions. We urge increased and improved cost reporting by managers, practitioners and researchers to reduce knowledge gaps. Few costs are proactive investments; increased management spending is urgently needed to prevent and limit current and future aquatic IAS damages. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (
  • Angulo, Elena; Diagne, Christophe; Ballesteros-Mejia, Liliana; Adamjy, Tasnime; Ahmed, Danish A.; Akulov, Evgeny; Banerjee, Achyut K.; Capinha, Cesar; Dia, Cheikh A. K. M.; Dobigny, Gauthier; Duboscq-Carra, Virginia G.; Golivets, Marina; Haubrock, Phillip J.; Heringer, Gustavo; Kirichenko, Natalia; Kourantidou, Melina; Liu, Chunlong; Nunez, Martin A.; Renault, David; Roiz, David; Taheri, Ahmed; Verbrugge, Laura Nicoline Halley; Watari, Yuya; Xiong, Wen; Courchamp, Franck (2021)
    We contend that the exclusive focus on the English language in scientific researchmight hinder effective communication between scientists and practitioners or policymakerswhose mother tongue is non-English. This barrier in scientific knowledge and data transfer likely leads to significant knowledge gaps and may create biases when providing global patterns in many fields of science. To demonstrate this, we compiled data on the global economic costs of invasive alien species reported in 15 non-English languages. We compared it with equivalent data from English documents (i.e., the InvaCost database, the most up-to-date repository of invasion costs globally). The comparison of both databases (similar to 7500 entries in total) revealed that non-English sources: (i) capture a greater amount of data than English sources alone (2500 vs. 2396 cost entries respectively); (ii) add 249 invasive species and 15 countries to those reported by English literature, and (iii) increase the global cost estimate of invasions by 16.6% (i.e., US$ 214 billion added to 1.288 trillion estimated fromthe English database). Additionally, 2712 cost entries - not directly comparable to the English database - were directly obtained frompractitioners, revealing the value of communication between scientists and practitioners. Moreover, we demonstrated how gaps caused by overlooking non-English data resulted in significant biases in the distribution of costs across space, taxonomic groups, types of cost, and impacted sectors. Specifically, costs from Europe, at the local scale, and particularly pertaining to management, were largely under-represented in the English database. Thus, combining scientific data from English and non-English sources proves fundamental and enhances data completeness. Considering non-English sources helps alleviate biases in understanding invasion costs at a global scale. Finally, it also holds strong potential for improving management performance, coordination among experts (scientists and practitioners), and collaborative actions across countries. Note: non-English versions of the abstract and figures are provided in Appendix S5 in 12 languages. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http:// by/4.0/).