Browsing by Subject "Jets"

Sort by: Order: Results:

Now showing items 1-10 of 10
  • The CMS collaboration; Tumasyan, A.; Adam, W.; Eerola, P.; Forthomme, L.; Kirschenmann, H.; Osterberg, K.; Voutilainen, Mikko; Brucken, E.; Garcia, F.; Havukainen, J.; Heikkilä, Jaana; Karimäki, Veikko; Kim, Minsuk; Kinnunen, R.; Kortelainen, Matti; Lampen, T.; Lassila-Perini, K.; Laurila, Santeri; Lehti, S.; Linden, T.; Luukka, P.; Siikonen, H.; Tuominen, Eija; Tuominiemi, J.; Viinikainen, Jussi; Tuuva, Tuure (2022)
  • Holmberg, Daniel (Helsingin yliopisto, 2022)
    The LHC particle accelerator at CERN probes the elementary building blocks of matter by colliding protons at a center-of-mass energy of √s = 13 TeV. Collimated sprays of particles arise when quarks and gluons are produced at high energies, that are reconstructed from measured data and clustered together into jets. Accurate measurements of the energy of jets are paramount for sensitive particle physics analyses at the CMS experiment. Jet energy corrections are for that reason used to map measurements towards Monte Carlo simulated truth values, which are independent of detector response. The aim of this thesis is to improve upon the standard jet energy corrections by utilizing deep learning. Recent advancements on learning from point clouds in the machine learning community have been adopted in particle physics studies to improve jet flavor classification accuracy. This includes representing jet constituents as an unordered set, or a so-called “particle cloud”. Two highly performant models suitable for such data are the set-based Particle Flow Network and the graph-based ParticleNet. A natural next step in the advancement of jet energy corrections is to adopt a similar methodology, only changing the problem statement from classification to regression. The deep learning models developed in this work provide energy corrections that are generically applicable to differently flavored jets. Their performance is presented in the form of jet energy response resolution and reduction in flavor dependence. The models achieve state of the art performance for both metrics, significantly surpassing the standard corrections benchmark.
  • Plaschke, Ferdinand; Hietala, Heli; Archer, Martin; Blanco-Cano, Xochitl; Kajdic, Primoz; Karlsson, Tomas; Lee, Sun Hee; Omidi, Nojan; Palmroth, Minna; Roytershteyn, Vadim; Schmid, Daniel; Sergeev, Victor; Sibeck, David (2018)
    The magnetosheath flow may take the form of large amplitude, yet spatially localized, transient increases in dynamic pressure, known as "magnetosheath jets" or "plasmoids" among other denominations. Here, we describe the present state of knowledge with respect to such jets, which are a very common phenomenon downstream of the quasi-parallel bow shock. We discuss their properties as determined by satellite observations (based on both case and statistical studies), their occurrence, their relation to solar wind and foreshock conditions, and their interaction with and impact on the magnetosphere. As carriers of plasma and corresponding momentum, energy, and magnetic flux, jets bear some similarities to bursty bulk flows, which they are compared to. Based on our knowledge of jets in the near Earth environment, we discuss the expectations for jets occurring in other planetary and astrophysical environments. We conclude with an outlook, in which a number of open questions are posed and future challenges in jet research are discussed.
  • The CMS collaboration; Sirunyan, A. M.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T. (2018)
    The production of a Z boson, decaying to two charged leptons, in association with jets in proton- proton collisions at a centre- of- mass energy of 13 TeV is measured. Data recorded with the CMS detector at the LHC are used that correspond to an integrated luminosity of 2.19 fb - 1. The cross section is measured as a function of the jet multiplicity and its dependence on the transverse momentum of the Z boson, the jet kinematic variables ( transverse momentum and rapidity), the scalar sum of the jet momenta, which quantifies the hadronic activity, and the balance in transverse momentum between the reconstructed jet recoil and the Z boson. The measurements are compared with predictions from four different calculations. The first two merge matrix elements with different parton multiplicities in the final state and parton showering, one of which includes oneloop corrections. The third is a fixed- order calculation with next- to- next- to- leading order accuracy for the process with a Z boson and one parton in the final state. The fourth combines the fully differential next- to- next- to- leading order calculation of the process with no parton in the final state with next- to- next- to- leading logarithm resummation and parton showering.
  • The CMS collaboration; Tumasyan, A.; Adam, W.; Eerola, P.; Forthomme, Laurent; Kirschenmann, H.; Österberg, K.; Voutilainen, M.; Bharthuar, Shudhashil; Brücken, Erik; Garcia, F.; Havukainen, J.; Heikkilä, Jaana; Kim, Minsuk; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Lotti, Mikko; Luukka, P.; Martikainen, Laura; Ott, Jennifer; Pekkanen, Juska; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Viinikainen, Jussi; Petrow, H.; Tuuva, T. (2022)
    A measurement of inclusive four-jet production in proton-proton collisions at a center-of-mass energy of 13 TeV is presented. The transverse momenta of jets within vertical bar eta vertical bar 4.7 are required to exceed 35, 30, 25, and 20 GeV for the first-, second-, third-, and fourth-leading jet, respectively. Differential cross sections are measured as functions of the jet transverse momentum, jet pseudorapidity, and several other observables that describe the angular correlations between the jets. The measured distributions show sensitivity to different aspects of the underlying event, parton shower modeling, and matrix element calculations. In particular, the interplay between angular correlations caused by parton shower and double-parton scattering contributions is shown to be important. The double-parton scattering contribution is extracted by means of a template fit to the data, using distributions for single-parton scattering obtained from Monte Carlo event generators and a double-parton scattering distribution constructed from inclusive single-jet events in data. The effective double-parton scattering cross section is calculated and discussed in view of previous measurements and of its dependence on the models used to describe the single-parton scattering background.
  • The CMS collaboration; Sirunyan, A. M.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T. (2019)
    Measurements of differential cross sections for inclusive very forward jet production in proton-lead collisions as a function of jet energy are presented. The data were collected with the CMS experiment at the LHC in the laboratory pseudorapidity range 6 : 6 < < 5 : 2. Asymmetric beam energies of 4TeV for protons and 1.58TeV per nucleon for Pb nuclei were used, corresponding to a center-of-mass energy per nucleon pair of p sNN = 5 : 02TeV. Collisions with either the proton (p+ Pb) or the ion (Pb+ p) traveling towards the negative hemisphere are studied. The jet cross sections are unfolded to stable-particle level cross sections with pT & 3 GeV, and compared to predictions from various Monte Carlo event generators. In addition, the cross section ratio of p+ Pb and Pb+ p data is presented. The results are discussed in terms of the saturation of gluon densities at low fractional parton momenta. None of the models under consideration describes all the data over the full jet-energy range and for all beam con fi gurations. Discrepancies between the di ff erential cross sections in data and model predictions of more than two orders of magnitude are observed.
  • The CMS collaboration; Sirunyan, A. M.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J.K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T. (2018)
    A search for narrow vector resonances decaying into quark-antiquark pairs is presented. The analysis is based on data collected in proton-proton collisions at root s = 13 TeV with the CMS detector at the LHC, corresponding to an integrated luminosity of 35.9 fb(-1). The hypothetical resonance is produced with sufficiently high transverse momentum that its decay products are merged into a single jet with two-prong substructure. A signal would be identified as a peak over a smoothly falling background in the distribution of the invariant mass of the jet, using novel jet substructure techniques. No evidence for such a resonance is observed within the mass range of 50-300 GeV. Upper limits at 95% confidence level are set on the production cross section, and presented in a mass-coupling parameter space. The limits further constrain simplified models of dark matter production involving a mediator interacting between quarks and dark matter particles through a vector or axial-vector current. In the framework of these models, the results are the most sensitive to date, extending for the first time the search region to masses below 100 GeV.
  • The CMS collaboration; Sirunyan, A. M.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T. (2018)
    Searches for resonances decaying into pairs of jets are performed using proton-proton collision data collected at root s = 13 TeV corresponding to an integrated luminosity of up to 36 fb(-1). A low-mass search, for resonances with masses between 0.6 and 1.6 TeV, is performed based on events with dijets reconstructed at the trigger level from calorimeter information. A high-mass search, for resonances with masses above 1.6 TeV, is performed using dijets reconstructed offline with a particle-flow algorithm. The dijet mass spectrum is well described by a smooth parameterization and no evidence for the production of new particles is observed. Upper limits at 95% confidence level are reported on the production cross section for narrow resonances with masses above 0.6 TeV. In the context of specific models, the limits exclude string resonances with masses below 7.7 TeV, scalar diquarks below 7.2 TeV, axigluons and colorons below 6.1 TeV, excited quarks below 6.0 TeV, color-octet scalars below 3.4 TeV, W' bosons below 3.3 TeV, Z' bosons below 2.7 TeV, Randall-Sundrum gravitons below 1.8 TeV and in the range 1.9 to 2.5 TeV, and dark matter mediators below 2.6 TeV. The limits on both vector and axial-vector mediators, in a simplified model of interactions between quarks and dark matter particles, are presented as functions of dark matter particle mass and coupling to quarks. Searches are also presented for broad resonances, including for the first time spin-1 resonances with intrinsic widths as large as 30% of the resonance mass. The broad resonance search improves and extends the exclusions of a dark matter mediator to larger values of its mass and coupling to quarks.
  • The CMS collaboration; Sirunyan, A. M.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T. (2019)
    A search is presented for pair production of the standard model Higgs boson using data from proton-proton collisions at a centre-of-mass energy of 13 TeV, collected by the CMS experiment at the CERN LHC in 2016, and corresponding to an integrated luminosity of 35.9 fb(-1). The final state consists of two b quark-antiquark pairs. The search is conducted in the region of phase space where one pair is highly Lorentz-boosted and is reconstructed as a single large-area jet, and the other pair is resolved and is reconstructed using two b-tagged jets. The results are obtained by combining this analysis with another from CMS looking for events with two large jets. Limits are set on the product of the cross sections and branching fractions for narrow bulk gravitons and radions in warped extradimensional models having a mass in the range 750-3000 GeV. The resulting observed and expected upper limits on the non-resonant Higgs boson pair production cross section correspond to 179 and 114 times the standard model value, respectively, at 95% confidence level. The existence of anomalous Higgs boson couplings is also investigated and limits are set on the non-resonant Higgs boson pair production cross sections for representative coupling values.
  • The CMS collaboration; Tumasyan, A.; Adam, W.; Eerola, P.; Forthomme, Laurent; Kirschenmann, H.; Österberg, K.; Voutilainen, M.; Bharthuar, Shudhashil; Bharti, M.; Brücken, Erik; Garcia, F.; Havukainen, J.; Heikkilä, Jaana; Kim, Minsuk; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Lotti, Mikko; Luukka, P.; Martikainen, Laura; Ott, Jennifer; Pekkanen, Juska; Siikonen, H.; Singh, B.; Thakur, S.; Tuominen, E.; Tuominiemi, J.; Viinikainen, Jussi; Petrow, H.; Tuuva, T. (2021)
    Double-parton scattering is investigated using events with a Z boson and jets. The Z boson is reconstructed using only the dimuon channel. The measurements are performed with proton-proton collision data recorded by the CMS experiment at the LHC at root s = 13TeV, corresponding to an integrated luminosity of 35.9 fb(-1) collected in the year 2016. Differential cross sections of Z+ >= 1 jet and Z+ >= 2 jets are measured with transverse momentum of the jets above 20 GeV and pseudorapidity vertical bar eta vertical bar < 2.4. Several distributions with sensitivity to double-parton scattering effects are measured as functions of the angle and the transverse momentum imbalance between the Z boson and the jets. The measured distributions are compared with predictions from several event generators with different hadronization models and different parameter settings for multiparton interactions. The measured distributions show a dependence on the hadronization and multiparton interaction simulation parameters, and are important input for future improvements of the simulations.