Browsing by Subject "KETAMINE"

Sort by: Order: Results:

Now showing items 1-8 of 8
  • Alitalo, Okko; Saarreharju, Roosa; Henter, Ioline D.; Jr, Carlos A. Zarate; Kohtala, Samuel; Rantamäki, Tomi (2021)
    Depression is frequently associated with sleep problems, and clinical improvement often coincides with the normalization of sleep architecture and realignment of circadian rhythm. The effectiveness of treatments targeting sleep in depressed patients, such as sleep deprivation, further demonstrates the confluence of sleep and mood. Moreover, recent studies showing that the rapid-acting antidepressant ketamine influences processes related to sleep-wake neurobiology have led to novel hypotheses explaining rapid and sustained antidepressant effects. Despite the available evidence, studies addressing ketamine's antidepressant effects have focused on pharmacology and often overlooked the role of physiology. To explore this discrepancy in research on rapid acting antidepressants, we examined articles published between 2009-2019. A keyword search algorithm indicated that vast majority of the articles completely ignored sleep. Out of the 100 most frequently cited pre clinical and clinical research papers, 89 % and 71 %, respectively, did not mention sleep at all. Furthermore, only a handful of these articles disclosed key experimental variables, such as the times of treatment administration or behavioral testing, let alone considered the potential association between these variables and experimental observations. Notably, in preclinical studies, treatments were preferentially administered during the inactive period, which is the polar opposite of clinical practice and research. We discuss the potential impact of this practice on the results in the field. Our hope is that this perspective will serve as a wake-up call to (re)-examine rapid-acting antidepressant effects with more appreciation for the role of sleep and chronobiology.
  • Einwaller, Joy; Painer, Johanna; Raekallio, Marja; Gasch, Kristina; Restitutti, Flavia; Auer, Ulrike; Stalder, Gabrielle L. (2020)
    Objective To determine the effect of intravenous vatinoxan administration on bradycardia, hypertension and level of anaesthesia induced by medetomidine-tiletamine-zolazepam in red deer (Cervus elaphus). Study design and animals A total of 10 healthy red deer were enrolled in a randomized, controlled, experimental, crossover study. Methods Deer were administered a combination of 0.1 mg kg-1 medetomidine hydrochloride and 2.5 mg kg-1 tiletamine-zolazepam intramuscularly, followed by 0.1 mg kg-1 vatinoxan hydrochloride or equivalent volume of saline intravenously (IV) 35 minutes after anaesthetic induction. Heart rate (HR), mean arterial blood pressure (MAP), respiration rate (fR), end-tidal CO2 (PE′CO2), arterial oxygen saturation (SpO2), rectal temperature (RT) and level of anaesthesia were assessed before saline/vatinoxan administration (baseline) and at intervals for 25 minutes thereafter. Differences within treatments (change from baseline) and between treatments were analysed with linear mixed effect models (p <0.05). Results Maximal (81 ± 10 beats minute-1) HR occurred 90 seconds after vatinoxan injection and remained significantly above baseline (42 ± 4 beats minute-1) for 15 minutes. MAP significantly decreased from baseline (122 ± 10 mmHg) to a minimum MAP of 83 ± 6 mmHg 60 seconds after vatinoxan and remained below baseline until end of anaesthesia. HR remained unchanged from baseline (43 ± 5 beats minute-1) with the saline treatment, while MAP decreased significantly (112 ± 16 mmHg) from baseline after 20 minutes. PE′CO2, fR, and SpO2 showed no significant differences between treatments, while RT decreased significantly 25 minutes after vatinoxan. Level of anaesthesia was not significantly influenced by vatinoxan. Conclusion and clinical relevance Vatinoxan reversed hypertension and bradycardia induced by medetomidine without causing hypotension or affecting the level of anaesthesia in red deer. However, the effect on HR subsided 15 minutes after vatinoxan IV administration. Vatinoxan has the potential to reduce anaesthetic side effects in non-domestic ruminants immobilized with medetomidine-tiletamine-zolazepam.
  • Kohtala, Henrik Samuel; Theilmann, Wiebke; Rosenholm, Marko; Penna, Leena; Karabulut, Gulsum; Uusitalo, Salla; Järventausta, Kaija; Yli-Hankala, Arvi; Yalcin, Ipek; Matsui, Nobuaki; Wigren, Henna-Kaisa; Rantamäki, Tomi (2019)
    Rapid antidepressant effects of ketamine become most evident when its psychotomimetic effects subside, but the neurobiological basis of this lag remains unclear. Laughing gas (N2O), another NMDA-R (N-methyl-d-aspartate receptor) blocker, has been reported to bring antidepressant effects rapidly upon drug discontinuation. We took advantage of the exceptional pharmacokinetic properties of N2O to investigate EEG (electroencephalogram) alterations and molecular determinants of antidepressant actions during and immediately after NMDA-R blockade. Effects of the drugs on brain activity were investigated in C57BL/6 mice using quantitative EEG recordings. Western blot and qPCR were used for molecular analyses. Learned helplessness (LH) was used to assess antidepressant-like behavior. Immediate-early genes (e.g., bdnf) and phosphorylation of mitogen-activated protein kinasemarkers of neuronal excitabilitywere upregulated during N2O exposure. Notably, phosphorylation of BDNF receptor TrkB and GSK3 (glycogen synthase kinase 3) became regulated only gradually upon N2O discontinuation, during a brain state dominated by slow EEG activity. Subanesthetic ketamine and flurothyl-induced convulsions (reminiscent of electroconvulsive therapy) also evoked slow oscillations when their acute pharmacological effects subsided. The correlation between ongoing slow EEG oscillations and TrkB-GSK3 signaling was further strengthened utilizing medetomidine, a hypnotic-sedative agent that facilitates slow oscillations directly through the activation of (2)-adrenergic autoreceptors. Medetomidine did not, however, facilitate markers of neuronal excitability or produce antidepressant-like behavioral changes in LH. Our results support a hypothesis that transient cortical excitability and the subsequent regulation of TrkB and GSK3 signaling during homeostatic emergence of slow oscillations are critical components for rapid antidepressant responses.
  • Alitalo, Okko; Rantamäki, Tomi; Huhtala, Tuulia (2020)
    Autoradiography (ARG) is a high-resolution imaging method for localization of radiolabeled biomarkers in ex vivo specimen. ARG using 2-deoxy-D-glucose (2-DG) method is used in to study drug actions on brain functional activity, as it provides results comparable to clinically used functional positron-emission tomography (PET). The requirement of slow analog detection methods and emerging advances in small animal PET imaging have, however, reduced the interest in ARG. In contrast to ARG, experimental animals need to be restrained or sedated/anesthetized for PET imaging, which strongly influence functional activity and thus complicate the interpretation of the results. Digital direct particle-counting ARG systems have gained attraction during the last decade to overcome the caveats of conventional ARG methods. Here we demonstrate that the well-established 2-DG imaging method can be adapted into use with contemporary digital detectors. This method readily and rapidly captures the characteristic effects of phencyclidine (5 mg/kg, i.p.), a dissociative agent targeting the NMDAR (N-methyl-D-aspartate receptor), on regional glucose utilization in the adult mouse brain. Pretreatment with antipsychotic drug clozapine (6 mg/kg, i.p.) essentially abolishes these effects of phencyclidine on brain functional activity. Digital ARG produces viable data for the regional analysis of functional activity in a fraction of time required for film development. These results support the use of digital ARG in preclinical drug research, where high throughput and response linearity are preferred and use of sedation/anesthesia has to be avoided.
  • Sun, Weilun; Suzuki, Kunimichi; Toptunov, Dmytro; Stoyanov, Stoyan; Yuzaki, Michisuke; Khiroug, Leonard; Dilyatev, Alexander (2019)
    Two-photon imaging of fluorescently labeled microglia in vivo provides a direct approach to measure motility of microglial processes as a readout of microglial function that is crucial in the context of neurodegenerative diseases, as well as to understand the neuroinflammatory response to implanted substrates and brain-computer interfaces. In this longitudinal study, we quantified surveilling and photodamage-directed microglial processes motility in both acute and chronic cranial window preparations and compared the motility under isoflurane and ketamine anesthesia to an awake condition in the same animal. The isoflurane anesthesia increased the length of surveilling microglial processes in both acute and chronic preparations, while ketamine increased the number of microglial branches in acute preparation only. In chronic (but not acute) preparation, the extension of microglial processes toward the laser-ablated microglial cell was faster under isoflurane (but not ketamine) anesthesia than in awake mice, indicating distinct effects of anesthetics and of preparation type. These data reveal potentiating effects of isoflurane on microglial response to damage, and provide a framework for comparison and optimal selection of experimental conditions for quantitative analysis of microglial function using two-photon microscopy in vivo.
  • Antila, Hanna; Ryazantseva, Maria; Popova, Dina; Sipilä, Pia; Guirado, Ramon; Kohtala, Samuel; Yalcin, Ipek; Lindholm, Jesse; Vesa, Liisa; Sato, Vinicius; Cordeira, Joshua; Autio, Henri; Kislin, Mikhail; Rios, Maribel; Joca, Samia; Casarotto, Plinio; Khiroug, Leonard; Lauri, Sari; Taira, Tomi; Castren, Eero; Rantamäki, Tomi (2017)
    A brief burst-suppressing isoflurane anesthesia has been shown to rapidly alleviate symptoms of depression in a subset of patients, but the neurobiological basis of these observations remains obscure. We show that a single isoflurane anesthesia produces antidepressant-like behavioural effects in the learned helplessness paradigm and regulates molecular events implicated in the mechanism of action of rapid-acting antidepressant ketamine: activation of brain-derived neurotrophic factor (BDNF) receptor TrkB, facilitation of mammalian target of rapamycin (mTOR) signaling pathway and inhibition of glycogen synthase kinase 3 beta (GSK3 beta). Moreover, isoflurane affected neuronal plasticity by facilitating long-term potentiation in the hippocampus. We also found that isoflurane increased activity of the parvalbumin interneurons, and facilitated GABAergic transmission in wild type mice but not in transgenic mice with reduced TrkB expression in parvalbumin interneurons. Our findings strengthen the role of TrkB signaling in the antidepressant responses and encourage further evaluation of isoflurane as a rapid-acting antidepressant devoid of the psychotomimetic effects and abuse potential of ketamine.
  • Theilmann, Wiebke; Rosenholm, Marko; Hampel, Philip; Löscher, Wolfgang; Rantamäki, Tomi (2020)
    Post-ictal emergence of slow wave EEG (electroencephalogram) activity and burst-suppression has been associated with the therapeutic effects of the electroconvulsive therapy (ECT), indicating that mere “cerebral silence” may elicit antidepressant actions. Indeed, brief exposures to burst-suppressing anesthesia has been reported to elicit antidepressant effects in a subset of patients, and produce behavioral and molecular alterations, such as increased expression of brain-derived neurotrophic factor (BDNF), connected with antidepressant responses in rodents. Here, we have further tested the cerebral silence hypothesis by determining whether repeated exposures to isoflurane anesthesia reduce depressive-like symptoms or influence BDNF expression in male Wistar outbred rats (Crl:WI(Han)) subjected to chronic mild stress (CMS), a model which is responsive to repeated electroconvulsive shocks (ECS, a model of ECT). Stress-susceptible, stress-resilient, and unstressed rats were exposed to 5 doses of isoflurane over a 15-day time period, with administrations occurring every third day. Isoflurane dosing is known to reliably produce rapid EEG burst-suppression (4% induction, 2% maintenance; 15 min). Antidepressant and anxiolytic effects of isoflurane were assessed after the first, third, and fifth drug exposure by measuring sucrose consumption, as well as performance on the open field and the elevated plus maze tasks. Tissue samples from the medial prefrontal cortex and hippocampus were collected, and levels of BDNF (brain-derived neurotrophic factor) protein were assessed. We find that isoflurane anesthesia had no impact on the behavior of stress-resilient or anhedonic rats in selected tests; findings which were consistent—perhaps inherently related—with unchanged levels of BDNF.