Browsing by Subject "KEY"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Reyes-Garcia, Victoria; Fernandez-Llamazares, Alvaro; Aumeeruddy-Thomas, Yildiz; Benyei, Petra; Bussmann, Rainer W.; Diamond, Sara K.; Garcia-del-Amo, David; Guadilla-Saez, Sara; Hanazaki, Natalia; Kosoy, Nicolas; Lavides, Margarita; Luz, Ana C.; McElwee, Pamela; Meretsky, Vicky J.; Newberry, Teresa; Molnar, Zsolt; Ruiz-Mallen, Isabel; Salpeteur, Matthieu; Wyndham, Felice S.; Zorondo-Rodriguez, Francisco; Brondizio, Eduardo S. (2022)
    The Convention on Biological Diversity is defining the goals that will frame future global biodiversity policy in a context of rapid biodiversity decline and under pressure to make transformative change. Drawing on the work of Indigenous and non-Indigenous scholars, we argue that transformative change requires the foregrounding of Indigenous peoples' and local communities' rights and agency in biodiversity policy. We support this argument with four key points. First, Indigenous peoples and local communities hold knowledge essential for setting realistic and effective biodiversity targets that simultaneously improve local livelihoods. Second, Indigenous peoples' conceptualizations of nature sustain and manifest CBD's 2050 vision of "Living in harmony with nature." Third, Indigenous peoples' and local communities' participation in biodiversity policy contributes to the recognition of human and Indigenous peoples' rights. And fourth, engagement in biodiversity policy is essential for Indigenous peoples and local communities to be able to exercise their recognized rights to territories and resources.
  • Tilstra, Arjen; Roth, Florian; El-Khaled, Yusuf C.; Pogoreutz, Claudia; Raedecker, Nils; Voolstra, Christian R.; Wild, Christian (2021)
    Recent research suggests that nitrogen (N) cycling microbes are important for coral holobiont functioning. In particular, coral holobionts may acquire bioavailable N via prokaryotic dinitrogen (N-2) fixation or remove excess N via denitrification activity. However, our understanding of environmental drivers on these processes in hospite remains limited. Employing the strong seasonality of the central Red Sea, this study assessed the effects of environmental parameters on the proportional abundances of N cycling microbes associated with the hard corals Acropora hemprichii and Stylophora pistillata. Specifically, we quantified changes in the relative ratio between nirS and nifH gene copy numbers, as a proxy for seasonal shifts in denitrification and N-2 fixation potential in corals, respectively. In addition, we assessed coral tissue-associated Symbiodiniaceae cell densities and monitored environmental parameters to provide a holobiont and environmental context, respectively. While ratios of nirS to nifH gene copy numbers varied between seasons, they revealed similar seasonal patterns in both coral species, with ratios closely following patterns in environmental nitrate availability. Symbiodiniaceae cell densities aligned with environmental nitrate availability, suggesting that the seasonal shifts in nirS to nifH gene abundance ratios were probably driven by nitrate availability in the coral holobiont. Thereby, our results suggest that N cycling in coral holobionts probably adjusts to environmental conditions by increasing and/or decreasing denitrification and N-2 fixation potential according to environmental nitrate availability. Microbial N cycling may, thus, extenuate the effects of changes in environmental nitrate availability on coral holobionts to support the maintenance of the coral-Symbiodiniaceae symbiosis.