Browsing by Subject "Kaukokartoitus"

Sort by: Order: Results:

Now showing items 1-6 of 6
  • Santillo, Jordan (Helsingin yliopisto, 2022)
    Research in radar technology requires readily accessible data from weather systems of varying properties. Lack of real-world data can delay or stop progress in development. Simulation aids this problem by providing data on demand. In this publication we present a new weather radar signal simulator. The algorithm produces raw time series data for a radar signal using physically based methodology with statistical techniques incorporated for computational efficiency. From a set of user-defined scatterer characteristics and radar system parameters, the simulator solves the radar range equation for individual, representative precipitation targets in a virtual weather cell. The model addresses the question of balancing utility and performance in simulating signal that contains all the essential weather information. For our applications, we focus on target velocity measurements. Signal is created with respect to the changing position of targets, leading to a discernable Doppler shift in frequency. We also show the operation of our simulator in generating signal using multiple pulse transmission schemes. First, we establish the theoretical basis for our algorithm. Then we demonstrate the simulator's capability for use in experimentation of advanced digital signal processing techniques and data acquisition, focusing on target motion. Finally, we discuss possible future developments of the simulator and their importance in application.
  • Le, Viet (Helsingin yliopisto, 2021)
    Atmospheric aerosol particles absorb and scatter solar radiation, directly altering the Earth’s radiation budget. These particles also have a complex role in weather and climate by changing cloud physical properties such as reflectivity by acting as cloud condensation nuclei or ice nuclei. Aerosol particles in the boundary layer are important because they pose a negative impact on air quality and human health. In addition, elevated aerosol from volcanic dust or desert dust present an imminent threat to aviation safety. To improve our understanding of the role of aerosol in influencing climate and the capability to detect volcanic ash, a ground-based network of Halo Doppler lidars at a wavelength of 1565 nm is used to collect data of atmospheric vertical profiles across Finland. By comparing the theoretical values of depolarization ratio of liquid clouds with the observed values, bleed through of each lidar is detected and corrected to improve data quality. The background noise levels of these lidars are also collected to assess their stability and durability. A robust classification algorithm is created to extract aerosol depolarization ratios from the data to calculate overall statistics. This study finds that bleed through is at 0.017 ± 0.0072 for the Uto-32 lidar and 0.0121 ± 0.0071 for the Uto-32XR lidar. By examining the time series of background noise level, these instruments are also found to be stable and durable. The results from the classification algorithm show that it successfully classified aerosol, cloud, and precipitation even on days with high turbulence. Depolarization ratios of aerosol across all the sites are extracted and their means are found to be at 0.055 ± 0.076 in Uto, 0.076 ± 0.090 in Hyytiala, 0.076 ± 0.071 in Vehmasmaki and 0.041 ± 0.089 in Sodankyla. These mean depolarization ratios are found to vary by season and location. They peak during summer, when pollen is abundant, but they remain at the lowest in the winter. As Sodankylä is located in the Artic, it has aerosols with lower depolarization ratio than other sites in most years. This study found that in summer, aerosol depolarization ratio is positively correlated with relative humidity and negatively correlated with height. No conclusion was drawn as to what processes play a more important role in these correlations. This study offers an overview of depolarization ratio for aerosol at a wavelength of 1565 nm, which is not commonly reported in literature. This opens a new possibility of using Doppler lidars for aerosol measurements to support air quality and the safety of aviation. Further research can be done test the capability of depolarization ratio at this wavelength to differentiate elevated aerosol such as dust, pollution, volcanic ash from boundary layer aerosol.
  • Filioglou, Maria (2020)
    Finnish Meteorological Institute Contributions 166
    Atmospheric aerosol particles absorb and scatter solar radiation, altering directly the radiation balance. Indirectly, these particles have a complex interplay in cloud formation, affecting cloud reflectivity and cloud lifetime. Apart from the climatic effects, atmospheric particles pose negative health effects and they reduce visibility with adverse effects in road traffic and aviation safety. To improve the understanding of the aerosol effect on climate four different studies have been conducted. The main instrument utilized to retrieve vertical profiles of the aerosols was a multi-wavelength PollyXT lidar. The hygroscopic effect of the aerosol particles in the retrieved optical properties which is relevant to cloud studies can be assessed using the water vapor capabilities of the lidar. Lidar water vapor retrieval requires initial calibration. An evaluation of the different lidar water vapor signal calibration techniques was performed to quantify the uncertainty in the retrieved water vapor profiles. Moreover, two measurement campaigns were held in Finland and the United Arab Emirates in order to characterize the properties of understudied aerosol types (pollen and Arabian dust). Lastly, the effectiveness of the different aerosol types to the formation of ice, water, or mixedphase clouds in the Arctic was determined using a synergy of a spaceborne lidar (CALIOP) and a cloud radar (CloudSat). The study on water vapor showed that accurate water vapor retrievals are subject to the calibration factor. Operational on-site radiosondes are the best option, but robust retrievals are possible using data from the nearest radiosonde site or modelled data. Satellite-derived water vapor profiles performed the poorest, yet they could serve as an option in the absence of better information. The analysis of the pollen observations showed that the classification of various pollen types is possible, although challenging. Characterization requires shape information from at minimum two linear particle depolarization wavelengths, as well as external information such as airmass backward trajectories to ensure that other non-spherical aerosol particles such as dust are not present over the measurement site. Regarding the Arabian dust optical properties, it was found that this aerosol type exhibits different optical properties, specifically concerning the lidar ratios, than the dust originating from the Saharan region. Consequently, the universal lidar ratio of 55 sr currently used in lidar-based applications may lead to biases for dust originating from the Arabian Peninsula. The Arctic study on aerosol-cloud interactions showed that higher aerosol load was associated with higher occurrence of mixed-phase clouds. On the contrary, moderate association was found with varying the aerosol type. Nevertheless, meteorology outweighed the aerosol load importance over less stable atmospheric conditions, for example, over open ocean. *** Tässä väitöskirjassa tutkittiin ilmakehän pienhiukkasten ominaisuuksia ja niiden vaikutusta pilviin hyödyntämällä useiden kaukokartoitusmenetelmien synergiaa. Tutkimuksessa käytettiin pääasiassa PollyXT–lidar-mittalaitetta. Tutkimus jakautui kolmeen kokonaisuuteen: 1) Arvioitiin eri kalibrointimenetelmien aiheuttamaa epävarmuutta lidar-mittauksiin pohjautuvissa vesihöyryprofiileissa. 2) Määritettiin Suomessa ja Yhdistyneissä arabiemiirikunnissa tehtyjen mittausten avulla siitepölyn ja aavikkopölyn optiset ominaisuudet. 3) Selvitettiin miten erilaiset pienhiukkastyypit vaikuttavat erityyppisten pilvien muodostumiseen Arktisella alueella hyödyntämällä satelliittipohjaisia lidar- (CALIOP) ja tutkahavaintoja (CloudSat). Vesihöyrytutkimus osoitti, että tarkat lidar-havainnot vesihöyrystä vaativat tarkan kalibroinnin muiden mittausten avulla. Parhaaseen tulokseen päästään käyttämällä radioluotauksia samalta asemalta mutta niiden puuttuessa voidaan käyttää myös radioluotauksia lähiseudulta tai mallinnettuja vesihyöryprofiileja. Heikoin tulos saatiin satelliittihavaintoja käyttämällä, mutta niistäkin on apua parempien tietolähteiden puuttuessa. Siitepölymittaukset osoittavat, että siitepölytyyppien tunnistaminen lidar-mittausten avulla saatavien optisten ominaisuuksien perusteella on mahdollista, vaikkakin haastavaa. Tyyppien tunnistamiseksi mittauksista täytyy saada tietoa hiukkasten muodosta, koosta sekä kyvystä absorboida valoa. Lisäksi pitää varmistaa, että havaintoja eivät ole häirinneet muut ei-pallomaiset hiukkaset, kuten aavikkopöly, käyttämällä tietoa ilmamassojen kulkureiteistä. Mittaukset Arabian niemimaan aavikkopölystä paljastivat, että sen optiset ominaisuudet poikkeavat Saharan pölystä, etenkin lidarsuhteen osalta. Täten lidar-mittausten analyyseissa usein käytetty lidarsuhde aavikkopölylle ei vastaa Arabian niemimaan aavikkopölyä. Tutkimus pienhiukkasten ja pilvien vuorovaikutuksesta Arktisella alueella osoitti, että pienhiukkasten määrän kasvaessa pilvet, jotka sisältävät sekä vettä että jäätä, lisääntyvät. Pienhiukkastyypin vaikutus pilviin oli huomattavasti pienempi. Sen sijaan ilmakehän ollessa epävakaa, esimerkiksi avomeren päällä, pilvien ominaisuudet riippuivat enemmän ilmakehän virtauksista kuin pienhiukkasten pitoisuudesta tai tyypistä.
  • Thomas, Steven Job (Helsingin yliopisto, 2020)
    Biogenic Volatile Organic Compounds play a major role in the atmosphere by acting as precursors in the formation of secondary organic aerosols and by also affecting the concentration of ozone. The chemical diversity of BVOCs is vast but global emissions are dominated by isoprene and monoterpenes. The emissions of BVOCs from plants are affected by environmental parameters with temperature and light having significant impacts on the emissions. The Downy birch and Norway spruce trees consist of heavy and low volatile compounds but published results are limited up to observing sesquiterpenoid emissions from these two trees. In this study, the Vocus proton-transfer-reaction time-of-flight mass spectrometer is deployed in the field to examine BVOC emissions from Downy birch and Norway spruce trees. With higher mass resolution, shorter time response and lower limits of detection than conventional PTR instruments, the Vocus can effectively measure a broader range of VOCs. For the first time, real-time emissions of diterpenes and 12 different oxygenated compounds were observed from birch and spruce trees. The emission spectrum of birch was dominated by C10H17+, while for spruce C5H9+ contributed the most. The sum emissions of oxygenated compounds contributed significantly to the observed total emissions from both the trees. The emission rates of all compounds varied dramatically throughout the period due to fluctuations in temperature and light. Due to lack of data from spruce, conclusive results for temperature and light response on terpene emissions could not be drawn. For birch, the emission rates were well explained by the temperature and temperature-light algorithms. The terpene emissions modelled using both algorithms correlated similarly with experimental data making it difficult to decisively conclude if the emissions originated from synthesis or pools.
  • Henttonen, Tommo (Helsingin yliopisto, 2020)
    Urban forests are part of the urban environment and create the conditions for a sustainable cityscape. Urban forests differ in their characteristics and objectives from commercial forests. The ecosystem services provided by urban forests take precedence over wood production aspects. Diverse objectives of urban forests make their design and management challenging. Urbanization is still a constant phenomenon, making the urban forests playing an increasingly important role. Human activities weaken and create unfavorable living and growing conditions for urban forests. Together with natural disasters, human activities and urbanization expose urban forests to fragmentation and deforestation. This in turn reduces the value of the ecosystem services they provide as well as the vitality of cities. A growing understanding of the value and importance of urban forest ecosystem services requires sustainable management of urban forests. This requires up-to-date and accurate information, for which remote sensing provides several tools and methods. It has become the most important tool for identifying and mapping urban green spaces in effective urban forest management. This thesis maps and classifies existing research on the use of remote sensing in the planning, management and monitoring of urban forests. The purpose of this work is to create a systematic mapping from which opportunities for systematic reviews and possibly the need for future research can be identified. The work follows the methodology and criteria created for systematic evidence syntheses. A total of 536 articles were included in the systematic mapping created in this work after screening the articles. Systematic literature review is usually carried out as a multi-person team, which increases the reliability of the method. As a thesis, this has been done by one person, which reduces the reliability of the results
  • Anttila, Kati (2019)
    Finnish Meteorological Institute Contributions 149
    The topic of this dissertation is the seasonal snow surface roughness and albedo. These are studied using optical satellite data and terrestrial laser scanning. The use of remote sensing data requires knowledge on the optical properties of the measured surface. For snow, these properties are affected by surface roughness. In this dissertation, two different methods for measuring snow surface roughness were validated and used in the field. One of them is based on plate photography. It is easy to use in the field and able to study surface features in sub-millimeter scale. The other method is based on mobile laser scanning and is able to produce 3D surface descriptions of large areas. The plate-photography-based method was used in the field to gather 669 profiles of the snow surface. The profiles were analyzed using multiscale parameters. The validation of satellite data requires observations at the surface. This validation data typically consists of pointwise measurements, whereas the satellite data observations cover larger areas. Laser scanning provides data that cover larger areas, thus more in line with the satellite data. This could in the future be used for satellite data validation. The usability of laser scanning data on snow surfaces was improved by studying the incidence angle dependency of the laser scanning intensity data on different snow types. A function for correcting the incidence angle effect on all measured snow types was developed. The backscattering of laser beam on snow surface was found to take place at the very surface for dry snow, and within 1cm depth for wet snow. The final part of this dissertation studies the changes in surface albedo prior to melting and the timing of the melt season in Northern Hemisphere land areas between 40°N and 80°N. The albedo prior to melt had changed significantly in the boreal forest area, but not in the tundra. The direction of change is different in different areas. The melt season takes place at the same time of year for most of the study area, but for Central Siberian Plane the melt season takes place earlier. In Northern Canadian Rocky Mountains and in the area around the borders of Russia, China and Mongolia the melt starts earlier and ends later, thus resulting in longer melt seasons. The changes observed in the pre-melt albedo are related to vegetation, whereas the melt season timing is more related to the climatic parameters. The results of this dissertation can be used in developing remote sensing data and climate models through improved understanding of seasonal snow surface roughness and albedo. *** Tämä väitöskirja käsittelee kausittaisen lumipeitteen pinnan karkeutta ja kirkkautta hyödyntäen optista satelliittiaineistoa ja laserkeilausta. Maan pinnan kaukokartoitus tarvitsee tietoa maan pinnan säteilyominaisuuksista. Lumipinnat heijastavat suurimman osan auringosta tulevasta säteilystä takaisin ilmakehään ja avaruuteen. Kausittainen lumipeite kattaa laajan alueen pohjoisen pallonpuoliskon maaalasta. Alueellisen kattavuutensa ja kirkkautensa vuoksi sillä on merkittävä vaikutus maapallon energiataseeseen ja siten ilmastoon. Lumipinnan heijastusominaisuudet, kuten esimerkiksi pinnan karkeus, vaikuttavat suoraan lumipinnan kirkkauteen. Tässä väitöskirjassa on tarkasteltu kahta lumen pinnan karkeuden mittausmenetelmää. Ensimmäinen näistä tekniikoista perustuu lumeen asetetun mustan levyn valokuvaamiseen. Levystä ja lumipinnasta otetusta kuvasta etsitään automaattisesti lumipinnan profiili. Tämä tekniikka on helppokäyttöinen ja luotettava myös kenttäolosuhteissa. Sillä saadaan kerättyä tietoa lumen pinnan karkeudesta alle millimetrin tarkkuudella. Toisessa mittausmenetelmässä laserkeilainta liikutetaan moottorikelkalla. Näin saadaan katettua laaja alue, josta syntyy 3D havaintoja. Pinnan karkeutta kuvaavien suureiden arvoihin vaikuttaa analysoidun profiilin pituus tai alueen laajuus. Kaukokartoituksen kannalta on oleellista mitata pinnankarkeutta kaikissa sovellukselle oleellisissa mittakaavoissa. Maan pinnan sirontamallit käyttävät pinnan karkeuden kuvaamiseen vain yhtä suuretta. Siten tämän suureen tulisi sisältää tietoa useista mittakaavoista. Tässä väitöskirjassa kerättiin Sodankylän alueelta 669 lumiprofiilia levymenetelmää käyttäen. Nämä profiilit analysoitiin käyttäen suureita, jotka kuvaavat profiilin korkeusvaihtelun riippuvuutta mitatusta matkasta ja sisältävät siten tietoa useista mittakaavoista. Käyttämällä näitä suureita kyettiin erottelemaan eri lumipintoja niiden iän ja lumityypin mukaan. Satelliittien instrumentit mittaavat kerralla laajoja alueita. Maan pinnalla tehtävillä pistemäisiä alueita kuvaavilla havainnoilla selvitetään, kuinka laadukkaita satelliittituotteet, kuten lumi- ja albedotuotteet, ovat. Koska pintahavaintojen ja satelliittihavaintojen kattamat alueet eivät ole samat, itse ahavainnotkaan eivät täysin vastaa toisiaan. Laserkeilausaineistot kattavat laajempia alueita kuin perinteisin menetelmin tuotetut havainnot ja ovat siten lupaavia satelliittiaineistojen arviointiin. Tämän väitöskirjan sisältämä tutkimus lasersäteen käyttäytymisestä lumipinnoilla edistää laserkeilausaineistojen käytettävyyttä lumeen liittyvässä tutkimuksessa ja satelliittiaineistojen laadun määrittämisessä. Tulosten mukaan kuivasta lumesta lasersäde heijastuu takaisin aivan lumen pinnasta, kun taas märässä lumessa se heijastuu noin 1 cm syvyydestä. Takaisin heijastuneen lasersäteen kirkkaus riippuu tulokulmasta samalla tavalla erityyppisillä lumipinnoilla. Siten tulokulman vaikutus laserhavainnon kirkkauteen voidaan korjata samalla tavalla kaikilla mitatuilla lumipinnoilla. Tämän väitöskirjan viimeisessä osassa tutkittiin kausittaisen lumipeitteen peittämien alueiden pinnan kirkkauden (albedon) ja sulamiskauden ajankohdan muutoksia vuosina 1982-2015 pohjoisen pallon puoliskon maa-alueilla leveyspiirien 40°N ja 80°N välillä. Tutkimus keskittyi sulamiskautta edeltävään pinnan kirkkauteen, joka oli muuttunut huomattavasti boreaalisen metsävyöhykkeen alueella. Muutos oli erisuuntaista eri alueilla. Tundralla sulamista edeltävä pinnan kirkkaus ei ollut muuttunut. Sulamiskausi oli aikaistunut Keski-Siperian ylängöllä ja pidentynyt Kiinan, Mongolian ja Venäjän rajaa ympäröivällä alueella sekä Kanadan Kalliovuorten pohjois-osissa. Pinnan kirkkauden muutokset olivat sidoksissa kasvillisuuden muutoksiin, kun taas sulamiskauden ajankohdan muutoksiin vaikuttivat enemmän ilmastolliset tekijät. Tämä väitöskirja parantaa kausittaisen lumipeitteen pinnan sirontaominaisuuksien ymmärtämistä ja sen tuloksia voidaan käyttää kaukokartoitusaineistojen ja ilmastomallien kehittämisessä.