Browsing by Subject "LACTATE"

Sort by: Order: Results:

Now showing items 1-6 of 6
  • Kallio-Kujala, I. J.; Bennett, R. C.; Raekallio, M. R.; Yatkin, E.; Meierjohann, A.; Savontaus, E.; Scheinin, M.; Spillmann, T.; Vainio, O. M. (2018)
    The commonly used sedative alpha(2)-adrenoceptor agonist dexmedetomidine has adverse cardiovascular effects in dogs that can be prevented by concomitant administration of the peripherally acting alpha(2)-adrenoceptor antagonist MK-467. An ancillary effect of dexmedetomidine is to decrease insulin release from the pancreas, whereas MK-467 stimulates insulin release. This study assessed the effects of co-administered dexmedetomidine and MK-467 in a canine glibenclamide-induced hypoglycaemia model. In a randomised, cross-over experiment, eight beagle dogs received five intravenous treatments, comprising two administrations of saline, with dexmedetomidine or dexmedetomidine and MK-467, and three administrations of glibenclamide, with saline, dexmedetomidine or dexmedetomidine and MK-467. Plasma concentrations of glucose, lactate, insulin, glucagon and the test drugs were monitored. Administration of glibenclamide significantly increased insulin secretion and decreased blood glucose concentrations. Dexmedetomidine counteracted glibenclamide-evoked hypoglycaemia. This was opposed by the alpha(2)-adrenoceptor antagonist MK-467, but the glibenclamide-evoked hypoglycaemia was not potentiated by co-administration of dexmedetomidine and MK-467. None of the dogs developed uncontrolled hypoglycaemia. Thus, the combination of dexmedetomidine and MK-467 appeared to be safe in this canine hypoglycaemia model. Nevertheless, when MK-467 is used to alleviate the undesired cardiovascular effects of alpha(2)-adrenoceptor agonists in dogs, it should be used with caution in animals at risk for hypoglycaemia because of its insulin-releasing and hypoglycaemic effects. (C) 2018 The Author(s). Published by Elsevier Ltd.
  • Levy, Bruno; Clere-Jehl, Raphael; Legras, Annick; Morichau-Beauchant, Tristan; Leone, Marc; Frederique, Ganster; Quenot, Jean-Pierre; Kimmoun, Antoine; Cariou, Alain; Lassus, Johan; Harjola, Veli-Pekka; Meziani, Ferhat; Louis, Guillaume; Rossignol, Patrick; Duarte, Kevin; Girerd, Nicolas; Mebazaa, Alexandre; Vignon, Philippe (2018)
    BACKGROUND Vasopressor agents could have certain specific effects in patients with cardiogenic shock (CS) after myocardial infarction, which may influence outcome. Although norepinephrine and epinephrine are currently the most commonly used agents, no randomized trial has compared their effects, and intervention data are lacking. OBJECTIVES The goal of this paper was to compare in a prospective, double-blind, multicenter, randomized study, the efficacy and safety of epinephrine and norepinephrine in patients with CS after acute myocardial infarction. METHODS The primary efficacy outcome was cardiac index evolution, and the primary safety outcome was the occurrence of refractory CS. Refractory CS was defined as CS with sustained hypotension, end-organ hypoperfusion and hyperlactatemia, and high inotrope and vasopressor doses. RESULTS Fifty-seven patients were randomized into 2 study arms, epinephrine and norepinephrine. For the primary efficacy endpoint, cardiac index evolution was similar between the 2 groups (p = 0.43) from baseline (H0) to H72. For the main safety endpoint, the observed higher incidence of refractory shock in the epinephrine group (10 of 27 [37%] vs. norepinephrine 2 of 30 [7%]; p = 0.008) led to early termination of the study. Heart rate increased significantly with epinephrine from H2 to H24 while remaining unchanged with norepinephrine (p <0.0001). Several metabolic changes were unfavorable to epinephrine compared with norepinephrine, including an increase in cardiac double product (p = 0.0002) and lactic acidosis from H2 to H24 (p <0.0001). CONCLUSIONS In patients with CS secondary to acute myocardial infarction, the use of epinephrine compared with norepinephrine was associated with similar effects on arterial pressure and cardiac index and a higher incidence of refractory shock. (Study Comparing the Efficacy and Tolerability of Epinephrine and Norepinephrine in Cardiogenic Shock [OptimaCC]; NCT01367743) (J AmColl Cardiol 2018; 72: 173-82) (C) 2018 by the American College of Cardiology Foundation.
  • Deptula, Paulina; Chamlagain, Bhawani; Edelmann, Minnamari; Sangsuwan, Panchanit; Nyman, Tuula A.; Savijoki, Kirsi; Piironen, Vieno; Varmanen, Pekka (2017)
    Propionibacterium freudenreichii is a traditional dairy bacterium and a producer of short chain fatty acids (propionic and acetic acids) as well as vitamin B12. In food applications, it is a promising organism for in situ fortification with B12 vitamin since it is generally recognized as safe (GRAS) and it is able to synthesize biologically active form of the vitamin. In the present study, vitamin B12 and pseudovitamin biosynthesis by P. freudenreichii was monitored by UHPLC as a function of growth in food-like conditions using a medium mimicking cheese environment, without cobalt or 5,6-dimethylbenzimidazole (DMBI) supplementation. Parallel growth experiments were performed in industrial-type medium known to support the biosynthesis of vitamin B12. The production of other key metabolites in the two media were determined by HPLC, while the global protein production was compared by gel-based proteomics to assess the effect of growth conditions on the physiological status of the strain and on the synthesis of different forms of vitamin. The results revealed distinct protein andmetabolite production, which reflected the growth conditions and the potential of P. freudenreichii for synthesizing nutritionally relevant amounts of active vitamin B12 regardless of the metabolic state of the cells.
  • Ojala, Teija; Laine, Pia K. S.; Ahlroos, Terhi; Tanskanen, Jarna; Pitkanen, Saara; Salusjarvi, Tuomas; Kankainen, Matti; Tynkkynen, Soile; Paulin, Lars; Auvinen, Petri (2017)
    Propionibacterium freudenreichii is a commercially important bacterium that is essential for the development of the characteristic eyes and flavor of Swiss-type cheeses. These bacteria grow actively and produce large quantities of flavor compounds during cheese ripening at warm temperatures but also appear to contribute to the aroma development during the subsequent cold storage of cheese. Here, we advance our understanding of the role of P. freudenreichii in cheese ripening by presenting the 2.68-Mbp annotated genome sequence of P. freudenreichii ssp. shermanii JS and determining its global transcriptional profiles during industrial cheese-making using transcriptome sequencing. The annotation of the genome identified a total of 2377 protein-coding genes and revealed the presence of enzymes and pathways for formation of several flavor compounds. Based on transcriptome profiling, the expression of 348 protein-coding genes was altered between the warm and cold room ripening of cheese. Several propionate, acetate, and diacetyl/acetoin production related genes had higher expression levels in the warm room, whereas a general slowing down of the metabolism and an activation of mobile genetic elements was seen in the cold room. A few ripening-related and aminoacid catabolism involved genes were induced or remained active in cold room, indicating that strain JS contributes to the aroma development also during cold room ripening. In addition, we performed a comparative genomic analysis of strain JS and 29 other Propionibacterium strains of 10 different species, including an isolate of both P. freudenreichii subspecies freudenreichii and shermanii. Ortholog grouping of the predicted protein sequences revealed that close to 86% of the ortholog groups of strain JS, including a variety of ripening-related ortholog groups, were conserved across the P. freudenreichii isolates. Taken together, this study contributes to the understanding of the genomic basis of P. freudenreichii and sheds light on its activities during cheese ripening. (C) 2016 Elsevier B.V. All rights reserved.
  • Ratia, Nadja; Pietiläinen, Kirsi H.; Auranen, Mari; Saksa, Lauri; Luukkonen, Ritva; Suomalainen, Anu; Piirilä, Päivi (2021)
    Background: Low-carbohydrate diets, including the modified Atkins diet (mAD), are commonly used to promote weight loss, improve exercise performance, and treat refractory epilepsy and inherited metabolism disorders. However, the effects of the high-fat-low-carbohydrate diet on the physiology of healthy subjects still need further study. We evaluated the physiological influence of mAD on cardiopulmonary exercise results in healthy adult subjects. Materials and methods: Ten healthy volunteers followed mAD for four weeks with laboratory follow-up. Cardiopulmonary exercise tests were performed before, and at the end of mAD, and venous lactate, ammonia, and blood gases were collected before, during, and after exercise testing. Results and conclusions: Four-week mAD decreased the subjects' mechanical efficiency in the cardiopulmonary exercise test and caused increased ventilation and decreased fraction of expired CO2 in maximal exercise. This evidence suggests that mAD can cause hyperventilation tendency at least in the short term, a possible adverse effect of the diet.
  • Thi Phuong Nam Bui,; Schols, Henk A.; Jonathan, Melliana; Stams, Alfons J. M.; de Vos, Willem M.; Plugge, Caroline M. (2019)
    The human intestinal tract harbors diverse and complex microbial communities that have a vast metabolic capacity including the breakdown of complex carbohydrates into short chain fatty acids, acetate, propionate, and butyrate. As butyrate is beneficial for gut health there is much attention on butyrogenic bacteria and their role in the colonic anaerobic food chain. However, our understanding how production of butyrate by gut microorganisms is controlled by interactions between different species and environmental nutrient availability is very limited. To address this, we set up experimental in vitro co-culture systems to study the metabolic interactions of Anaerostipes rhamnosivorans, a butyrate producer with each of its partners; Blautia hydrogenotrophica, an acetogen; Methanobrevibacter smithii, a methanogen and Bacteroides thetaiotaomicron, a versatile degrader of plant cell wall pectins; through corresponding specific cross-feeding. In all co-cultures, A. rhamnosivorans was able to benefit from its partner for enhanced butyrate formation compared to monocultures. Interspecies transfer of hydrogen or formate from A. rhamnosivorans to the acetogen B. hydrogenotrophica and in turn of acetate from the acetogen to the butyrogen were essential for butyrate formation. A. rhamnosivorans grown on glucose supported growth of M. smithii via interspecies formate/hydrogen transfer enhancing butyrate formation. In the co-culture with pectin, lactate was released by B. thetaiotaomicron which was concomitantly used by A. rhamnosivorans for the production of butyrate. Our findings indicate enhanced butyrate formation through microbe-microbe interactions between A. rhamnosivorans and an acetogen, a methanogen or a pectin-degrader. Such microbial interactions enhancing butyrate formation may be beneficial for colonic health.