Browsing by Subject "LAYER"

Sort by: Order: Results:

Now showing items 1-10 of 10
  • Fraser, James P.; Postnikov, Pavel; Miliutina, Elena; Kolska, Zdenka; Valiev, Rashid; Svorcik, Vaclav; Lyutakov, Oleksiy; Ganin, Alexey Y.; Guselnikova, Olga (2020)
    Two-dimensional (2D) transition-metal dichalcogenides have become promising candidates for surface-enhanced Raman spectroscopy (SERS), but currently very few examples of detection of relevant molecules are available. Herein, we show the detection of the lipophilic disease marker beta-sitosterol on few-layered MoTe2 films. The chemical vapor deposition (CVD)-grown films are capable of nanomolar detection, exceeding the performance of alternative noble-metal surfaces. We confirm that the enhancement occurs through the chemical enhancement (CE) mechanism via formation of a surface-analyte complex, which leads to an enhancement factor of approximate to 10(4), as confirmed by Fourier transform infrared (FTIR), UV-vis, and cyclic voltammetry (CV) analyses and density functional theory (DFT) calculations. Low values of signal deviation over a seven-layered MoTe2 film confirms the homogeneity and reproducibility of the results in comparison to noble-metal substrate analogues. Furthermore, beta-sitosterol detection within cell culture media, a minimal loss of signal over 50 days, and the opportunity for sensor regeneration suggest that MoTe2 can become a promising new SERS platform for biosensing.
  • Zsebeházi, Gabriella; Mahó, Sándor István (2021)
    Land surface models with detailed urban parameterization schemes provide adequate tools to estimate the impact of climate change in cities, because they rely on the results of the regional climate model, while operating on km scale at low cost. In this paper, the SURFEX land surface model driven by the evaluation and control runs of ALADIN-Climate regional climate model is validated over Budapest from the aspect of urban impact on temperature. First, surface temperature of SURFEX with forcings from ERA-Interim driven ALADIN-Climate was compared against the MODIS land surface temperature for a 3-year period. Second, the impact of the ARPEGE global climate model driven ALADIN-Climate was assessed on the 2 m temperature of SURFEX and was validated against measurements of a suburban station for 30 years. The spatial extent of surface urban heat island (SUHI) is exaggerated in SURFEX from spring to autumn, because the urbanized gridcells are generally warmer than their rural vicinity, while the observed SUHI extent is more variable. The model reasonably simulates the seasonal means and diurnal cycle of the 2 m temperature in the suburban gridpoint, except summer when strong positive bias occurs. However, comparing the two experiments from the aspect of nocturnal UHI, only minor differences arose. The thorough validation underpins the applicability of SURFEX driven by ALADIN-Climate for future urban climate projections.
  • Ruoko, Tero-Petri; Hiltunen, Arto; Iivonen, Tomi; Ulkuniemi, Riina; Lahtonen, Kimmo; Ali-Löytty, Harri; Mizohata, Kenichiro; Valden, Mika; Leskelä, Markku; Tkachenko, Nikolai V. (2019)
    We employ atomic layer deposition to prepare 50 nm thick hematite photoanodes followed by passivating them with a 0.5 nm thick Ta2O5-overlayer and compare them with samples uniformly doped with the same amount of tantalum. We observe a three-fold improvement in photocurrent with the same onset voltage using Ta-overlayer hematite photoanodes, while electrochemical impedance spectroscopy under visible light irradiation shows a decreased amount of surface states under water splitting conditions. The Tadoped samples have an even higher increase in photocurrent along with a 0.15 V cathodic shift in the onset voltage and decreased resistivity. However, the surface state capacitance for the Ta-doped sample is twice that of the reference photoanode, which implies a larger amount of surface hole accumulation. We further utilize transient absorption spectroscopy in the sub-millisecond to second timescale under operating conditions to show that electron trapping in both Ta2O5-passivated and Ta-doped samples is markedly reduced. Ultrafast transient absorption spectroscopy in the sub-picosecond to nanosecond timescale shows faster charge carrier dynamics and reduced recombination in the Ta-doped hematite photoanode resulting in the increased photoelectrochemical performance when compared with the Ta2O5-overlayer sample. Our results show that passivation does not affect the poor charge carrier dynamics intrinsic to hematite based photoanodes. The Ta-doping strategy results in more efficient electron extraction, solving the electron trapping issue and leading to increased performance over the surface passivation strategy.
  • Jurkute, Neringa; Majander, Anna; Bowman, Richard; Votruba, Marcela; Abbs, Stephen; Acheson, James; Lenaers, Guy; Amati-Bonneau, Patrizia; Moosajee, Mariya; Arno, Gavin; Yu-Wai-Man, Patrick (2019)
  • Ding, A. J.; Huang, X.; Nie, W.; Sun, J. N.; Kerminen, V. -M.; Petäjä, T.; Su, H.; Cheng, Y. F.; Yang, X. -Q.; Wang, M. H.; Chi, X. G.; Wang, J. P.; Virkkula, A.; Guo, W. D.; Yuan, J.; Wang, S. Y.; Zhang, R. J.; Wu, Y. F.; Song, Y.; Zhu, T.; Zilitinkevich, S.; Kulmala, M.; Fu, C. B. (2016)
    Aerosol-planetary boundary layer (PBL) interactions have been found to enhance air pollution in megacities in China. We show that black carbon (BC) aerosols play the key role in modifying the PBL meteorology and hence enhancing the haze pollution. With model simulations and data analysis from various field observations in December 2013, we demonstrate that BC induces heating in the PBL, particularly in the upper PBL, and the resulting decreased surface heat flux substantially depresses the development of PBL and consequently enhances the occurrences of extreme haze pollution episodes. We define this process as the dome effect of BC and suggest an urgent need for reducing BC emissions as an efficient way to mitigate the extreme haze pollution in megacities of China.
  • Norris, S. J.; Brooks, I. M.; Moat, B. I.; Yelland, M. J.; de Leeuw, G.; Pascal, R. W.; Brooks, B. (2013)
  • Forsman, Nina; Johansson, Leena-Sisko; Koivula, Hanna; Tuure, Matilda; Kääriäinen, Pirjo; Österberg, Monika (2020)
    Environmental benign cellulosic textiles are hampered by their tendency to absorb water, which restricts their use in functional clothing. Herein we describe a method to functionalize textile surfaces using thin, open coatings based on natural wax particles and natural polymers rendering cellulosic fabrics water-repellent while retaining their feel and breathability. The impact of curing temperature, cationic polymer and fabric properties on wetting and long-term water-repellency were studied using contact angle measurements and scanning electron microscopy. The wetting properties were correlated to roughness of the textiles using white light interferometer. X-ray photoelectron spectroscopy revealed the surface chemical composition, leading to fundamental understanding of the effect of annealing on the wax layer. Breathability was evaluated by water vapor permeability. The optimal curing temperature was 70 °C. The developed coating performed well on different natural textiles, and better than commercial alternatives. A set of garment prototypes were produced using the coating.
  • Merkouriadi, Ioanna; Lepparanta, Matti; Shirasawa, Kunio (2013)
  • Peltola, T.; Eremin, V.; Verbitskaya, E.; Härkönen, J. (2017)
    Segmented silicon detectors (micropixel and microstrip) are the main type of detectors used in the inner trackers of Large Hadron Collider (LHC) experiments at CERN. Due to the high luminosity and eventual high fluence of energetic particles, detectors with fast response to fit the short shaping time of 20-25 ns and sufficient radiation hardness are required. Charge collection measurements carried out at the Ioffe Institute have shown a reversal of the pulse polarity in the detector response to short-range charge injection. Since the measured negative signal is about 30-60% of the peak positive signal, the effect strongly reduces the CCE even in non-irradiated detectors. For further investigation of the phenomenon the measurements have been reproduced by TCAD simulations. As for the measurements, the simulation study was applied for the p-on-n strip detectors similar in geometry to those developed for the ATLAS experiment and for the Ioffe Institute designed p-on-n strip detectors with each strip having a window in the metallization covering the p(+) implant, allowing the generation of electron-hole pairs under the strip implant. Red laser scans across the strips and the interstrip gap with varying laser diameters and Si-SiO2 interface charge densities (Q(f)) were carried out. The results verify the experimentally observed negative response along the scan in the interstrip gap. When the laser spot is positioned on the strip p(+) implant the negative response vanishes and the collected charge at the active strip increases respectively. The simulation results offer a further insight and understanding of the influence of the oxide charge density in the signal formation. The main result of the study is that a threshold value of Q(f), that enables negligible losses of collected charges, is defined. The observed effects and details of the detector response for different charge injection positions are discussed in the context of Ramo's theorem.