Browsing by Subject "LEAF"

Sort by: Order: Results:

Now showing items 1-20 of 20
  • Porcar-Castell, Albert; Malenovsky, Zbynek; Magney, Troy; Van Wittenberghe, Shari; Fernandez-Marin, Beatriz; Maignan, Fabienne; Zhang, Yongguang; Maseyk, Kadmiel; Atherton, Jon; Albert, Loren P.; Robson, Thomas Matthew; Zhao, Feng; Garcia-Plazaola, Jose-Ignacio; Ensminger, Ingo; Rajewicz, Paulina A.; Grebe, Steffen; Tikkanen, Mikko; Kellner, James R.; Ihalainen, Janne A.; Rascher, Uwe; Logan, Barry (2021)
    Remote sensing methods enable detection of solar-induced chlorophyll a fluorescence. However, to unleash the full potential of this signal, intensive cross-disciplinary work is required to harmonize biophysical and ecophysiological studies. For decades, the dynamic nature of chlorophyll a fluorescence (ChlaF) has provided insight into the biophysics and ecophysiology of the light reactions of photosynthesis from the subcellular to leaf scales. Recent advances in remote sensing methods enable detection of ChlaF induced by sunlight across a range of larger scales, from using instruments mounted on towers above plant canopies to Earth-orbiting satellites. This signal is referred to as solar-induced fluorescence (SIF) and its application promises to overcome spatial constraints on studies of photosynthesis, opening new research directions and opportunities in ecology, ecophysiology, biogeochemistry, agriculture and forestry. However, to unleash the full potential of SIF, intensive cross-disciplinary work is required to harmonize these new advances with the rich history of biophysical and ecophysiological studies of ChlaF, fostering the development of next-generation plant physiological and Earth-system models. Here, we introduce the scale-dependent link between SIF and photosynthesis, with an emphasis on seven remaining scientific challenges, and present a roadmap to facilitate future collaborative research towards new applications of SIF.
  • Wagner, Fabien Hubert; Herault, Bruno; Rossi, Vivien; Hilker, Thomas; Maeda, Eduardo Eiji; Sanchez, Alber; Lyapustin, Alexei I.; Galvao, Lenio Soares; Wang, Yujie; Aragao, Luiz E. O. C. (2017)
    Our limited understanding of the climate controls on tropical forest seasonality is one of the biggest sources of uncertainty in modeling climate change impacts on terrestrial ecosystems. Combining leaf production, litterfall and climate observations from satellite and ground data in the Amazon forest, we show that seasonal variation in leaf production is largely triggered by climate signals, specifically, insolation increase (70.4% of the total area) and precipitation increase (29.6%). Increase of insolation drives leaf growth in the absence of water limitation. For these non-water-limited forests, the simultaneous leaf flush occurs in a sufficient proportion of the trees to be observed from space. While tropical cycles are generally defined in terms of dry or wet season, we show that for a large part of Amazonia the increase in insolation triggers the visible progress of leaf growth, just like during spring in temperate forests. The dependence of leaf growth initiation on climate seasonality may result in a higher sensitivity of these ecosystems to changes in climate than previously thought.
  • Wang, Fang; Robson, T Matthew; Casal, Jorge J; Aphalo, Pedro J. (2020)
    The UV-A/blue photoreceptors phototropins and cryptochromes are both known to contribute to stomatal opening (∆gs) in blue light. However, their relative contributions to maintenance of gs in blue light through the whole photoperiod remains unknown. To elucidate this question, Arabidopsis phot1 phot2 and cry1 cry2 mutants (MTs) and their respective wild types (WTs) were irradiated with 200 μmol m-2 s-1 of blue-, green- or red-light (BL, GL or RL) throughout a 11-hour photoperiod. Stomatal conductance (gs) was higher under BL, than under RL or GL. Under RL, gs was not affected by either of the photoreceptor mutations, but under GL gs was slightly lower in cry1 cry2 than its WT. Under BL, the presence of phototropins was essential for rapid stomatal opening at the beginning of the photoperiod, while maximal stomatal opening beyond 3 h of irradiation required both phototropins and cryptochromes. Time courses of whole-plant net carbon assimilation rate (Anet) and the effective quantum yield of photosystem II photochemistry (ΦPSII) were consistent with an Anet-independent contribution of BL on gs both in phot1 phot2 and cry1 cry2 mutants. The changing roles of phototropins and cryptochromes through the day may allow more flexible coordination between gs and Anet.
  • Viinikka, Arto; Hurskainen, Pekka; Keski-Saari, Sarita; Kivinen, Sonja; Tanhuanpää, Topi; Mäyrä, Janne; Poikolainen, Laura; Vihervaara, Petteri; Kumpula, Timo (2020)
    Sustainable forest management increasingly highlights the maintenance of biological diversity and requires up-to-date information on the occurrence and distribution of key ecological features in forest environments. European aspen (Populus tremulaL.) is one key feature in boreal forests contributing significantly to the biological diversity of boreal forest landscapes. However, due to their sparse and scattered occurrence in northern Europe, the explicit spatial data on aspen remain scarce and incomprehensive, which hampers biodiversity management and conservation efforts. Our objective was to study tree-level discrimination of aspen from other common species in northern boreal forests using airborne high-resolution hyperspectral and airborne laser scanning (ALS) data. The study contained multiple spatial analyses: First, we assessed the role of different spectral wavelengths (455-2500 nm), principal component analysis, and vegetation indices (VI) in tree species classification using two machine learning classifiers-support vector machine (SVM) and random forest (RF). Second, we tested the effect of feature selection for best classification accuracy achievable and third, we identified the most important spectral features to discriminate aspen from the other common tree species. SVM outperformed the RF model, resulting in the highest overall accuracy (OA) of 84% and Kappa value (0.74). The used feature set affected SVM performance little, but for RF, principal component analysis was the best. The most important common VI for deciduous trees contained Conifer Index (CI), Cellulose Absorption Index (CAI), Plant Stress Index 3 (PSI3), and Vogelmann Index 1 (VOG1), whereas Green Ratio (GR), Red Edge Inflection Point (REIP), and Red Well Position (RWP) were specific for aspen. Normalized Difference Red Edge Index (NDRE) and Modified Normalized Difference Index (MND705) were important for coniferous trees. The most important wavelengths for discriminating aspen from other species included reflectance bands of red edge range (724-727 nm) and shortwave infrared (1520-1564 nm and 1684-1706 nm). The highest classification accuracy of 92% (F1-score) for aspen was achieved using the SVM model with mean reflectance values combined with VI, which provides a possibility to produce a spatially explicit map of aspen occurrence that can contribute to biodiversity management and conservation efforts in boreal forests.
  • Magney, Troy S.; Frankenberg, Christian; Kohler, Philipp; North, Gretchen; Davis, Thomas S.; Dold, Christian; Dutta, Debsunder; Fisher, Joshua B.; Grossmann, Katja; Harrington, Alexis; Hatfield, Jerry; Stutz, Jochen; Sun, Ying; Porcar-Castell, Albert (2019)
    Novel satellite measurements of solar-induced chlorophyll fluorescence (SIF) can improve our understanding of global photosynthesis; however, little is known about how to interpret the controls on its spectral variability. To address this, we disentangle simultaneous drivers of fluorescence spectra by coupling active and passive fluorescence measurements with photosynthesis. We show empirical and mechanistic evidence for where, why, and to what extent leaf fluorescence spectra change. Three distinct components explain more than 95% of the variance in leaf fluorescence spectra under both steady-state and changing illumination conditions. A single spectral shape of fluorescence explains 84% of the variance across a wide range of species. The magnitude of this shape responds to absorbed light and photosynthetic up/down regulation; meanwhile, chlorophyll concentration and nonphotochemical quenching control 9% and 3% of the remaining spectral variance, respectively. The spectral shape of fluorescence is remarkably stable where most current satellite retrievals occur (far-red, >740nm), and dynamic downregulation of photosynthesis reduces fluorescence magnitude similarly across the 670- to 850-nm range. We conduct an exploratory analysis of hourly red and far-red canopy SIF in soybean, which shows a subtle change in red:far-red fluorescence coincident with photosynthetic downregulation but is overshadowed by longer-term changes in canopy chlorophyll and structure. Based on our leaf and canopy analysis, caution should be taken when attributing large changes in the spectral shape of remotely sensed SIF to plant stress, particularly if data acquisition is temporally sparse. Ultimately, changes in SIF magnitude at wavelengths greater than 740 nm alone may prove sufficient for tracking photosynthetic dynamics. Plain Language Summary Satellite remote sensing provides a global picture of photosynthetic activity-allowing us to see when, where, and how much CO2 plants are assimilating. To do this, satellites measure a small emission of energy from the plants called chlorophyll fluorescence. However, this measurement is typically made across a narrow wavelength range, while the emission spectrum (650-850 nm) is quite dynamic. We show where, why, and to what extent leaf fluorescence spectra change across a diverse range of species and conditions, ultimately informing canopy remote sensing measurements. Results suggest that wavelengths currently used by satellites are stable enough to track the downregulation of photosynthesis resulting from stress, while spectral shape changes respond more strongly to dynamics in canopy structure and chlorophyll concentration.
  • Zhang, Chao; Atherton, Jon; Penuelas, Josep; Filella, Iolanda; Kolari, Pasi; Aalto, Juho; Ruhanen, Hanna; Back, Jaana; Porcar-Castell, Albert (2019)
    Chlorophyll a fluorescence (ChlF) is closely related to photosynthesis and can be measured remotely using multiple spectral features as solar-induced fluorescence (SIF). In boreal regions, SIF shows particular promise as an indicator of photosynthesis, in part because of the limited variation of seasonal light absorption in these ecosystems. Seasonal spectral changes in ChlF could yield new information on processes such as sustained nonphotochemical quenching (NPQ(S)) but also disrupt the relationship between SIF and photosynthesis. We followed ChlF and functional and biochemical properties of Pinus sylvestris needles during the photosynthetic spring recovery period to answer the following: (a) How ChlF spectra change over seasonal timescales? (b) How pigments, NPQ(S), and total photosynthetically active radiation (PAR) absorption drive changes of ChlF spectra? (c) Do all ChlF wavelengths track photosynthetic seasonality? We found seasonal ChlF variation in the red and far-red wavelengths, which was strongly correlated with NPQ(S), carotenoid content, and photosynthesis (enhanced in the red), but not with PAR absorption. Furthermore, a rapid decrease in red/far-red ChlF ratio occurred in response to a cold spell, potentially relating to the structural reorganization of the photosystems. We conclude that all current SIF retrieval features can track seasonal photosynthetic dynamics in boreal evergreens, but the full SIF spectra provides additional insight.
  • Wang, Jinhui; Haapalainen, Minna; Nissinen, Anne I.; Pirhonen, Minna (2021)
    The interactions between the phloem-limited pathogen 'Candidatus Liberibacter solanacearum' haplotype C and carrot (Daucus carota subsp. sativus) were studied at 4, 5, and 9 weeks postinoculation (wpi), by combining dual RNA-Seq results with data on bacterial colonization and observations of the plant phenotype. In the infected plants, genes involved in jasmonate biosynthesis, salicylate signaling, pathogen-associated molecular pattern- and effector-triggered immunity, and production of pathogenesis-related proteins were up-regulated. At 4 wpi, terpenoid synthesis-related genes were up-regulated, presumably as a response to the psyllid feeding, whereas at 5 and 9 wpi, genes involved in both the terpenoid and flavonoid production were down-regulated and phenylpropanoid genes were up-regulated. Chloroplast-related gene expression was down-regulated, in concordance with the observed yellowing of the infected plant leaves. Both the RNA-Seq data and electron microscopy suggested callose accumulation in the infected phloem vessels, likely to impair the transport of photosynthates, while phloem regeneration was suggested by the formation of new sieve cells and the upregulation of cell wall-related gene expression. The 'Ca. L. solanacearum' genes involved in replication, transcription, and translation were expressed at high levels at 4 and 5 wpi, whereas, at 9 wpi, the Flp pilus genes were highly expressed, suggesting adherence and reducedmobility of the bacteria. The 'Ca. L. solanacearum' genes encoding ATP and C4-dicarboxylate uptake were differentially expressed between the early and late infection stages, suggesting a change in the dependence on different host-derived energy sources. HPE1 effector and salicylate hydroxylasewere expressed, presumably to suppress host cell death and salicylic acid-dependent defenses during the infection.
  • TeaComposition Network; Kwon, TaeOh; Shibata, Hideaki; Kepfer-Rojas, Sebastian; Schmidt, Inger K.; Larsen, Klaus S.; Beier, Claus; Berg, Björn; Verheyen, Kris; Lamarque, Jean-Francois; Hagedorn, Frank; Eisenhauer, Nico; Djukic, Ika; Loehr, John; Virkkala, Anna-Maria; Luoto, Miska (2021)
    Litter decomposition is a key process for carbon and nutrient cycling in terrestrial ecosystems and is mainly controlled by environmental conditions, substrate quantity and quality as well as microbial community abundance and composition. In particular, the effects of climate and atmospheric nitrogen (N) deposition on litter decomposition and its temporal dynamics are of significant importance, since their effects might change over the course of the decomposition process. Within the TeaComposition initiative, we incubated Green and Rooibos teas at 524 sites across nine biomes. We assessed how macroclimate and atmospheric inorganic N deposition under current and predicted scenarios (RCP 2.6, RCP 8.5) might affect litter mass loss measured after 3 and 12 months. Our study shows that the early to mid-term mass loss at the global scale was affected predominantly by litter quality (explaining 73% and 62% of the total variance after 3 and 12 months, respectively) followed by climate and N deposition. The effects of climate were not litter-specific and became increasingly significant as decomposition progressed, with MAP explaining 2% and MAT 4% of the variation after 12 months of incubation. The effect of N deposition was litter-specific, and significant only for 12-month decomposition of Rooibos tea at the global scale. However, in the temperate biome where atmospheric N deposition rates are relatively high, the 12-month mass loss of Green and Rooibos teas decreased significantly with increasing N deposition, explaining 9.5% and 1.1% of the variance, respectively. The expected changes in macroclimate and N deposition at the global scale by the end of this century are estimated to increase the 12-month mass loss of easily decomposable litter by 1.1-3.5% and of the more stable substrates by 3.8-10.6%, relative to current mass loss. In contrast, expected changes in atmospheric N deposition will decrease the mid-term mass loss of high-quality litter by 1.4-2.2% and that of low-quality litter by 0.9-1.5% in the temperate biome. Our results suggest that projected increases in N deposition may have the capacity to dampen the climate-driven increases in litter decomposition depending on the biome and decomposition stage of substrate.
  • Mikola, Juha; Koikkalainen, Katariina; Rasehorn, Mira; Silfver, Tarja; Paaso, Ulla; Rousi, Matti (2021)
    Fast-growing and slow-growing plant species are suggested to show integrated economics spectrums and the tradeoffs of fast growth are predicted to emerge as susceptibility to herbivory and resource competition. We tested if these predictions also hold for fast-growing and slow-growing genotypes within a silver birch, Betula pendula population. We exposed cloned saplings of 17 genotypes with slow, medium or fast height growth to reduced insect herbivory, using an insecticide, and to increasing resource competition, using naturally varying field plot grass cover. We measured shoot and root growth, ectomycorrhizal (EM) fungal production using ergosterol analysis and soil N transfer to leaves using N-15-labelled pulse of NH4+. We found that fast-growing genotypes grew on average 78% faster, produced 56% and 16% more leaf mass and ergosterol, and showed 78% higher leaf N uptake than slow-growing genotypes. The insecticide decreased leaf damage by 83% and increased shoot growth, leaf growth and leaf N uptake by 38%, 52% and 76%, without differences between the responses of fast-growing and slow-growing genotypes, whereas root mass decreased with increasing grass cover. Shoot and leaf growth of fast-growing genotypes decreased and EM fungal production of slow-growing genotypes increased with increasing grass cover. Our results suggest that fast growth is genotypically associated with higher allocation to EM fungi, better soil N capture and greater leaf production, and that the tradeoff of fast growth is sensitivity to competition, but not to insect herbivory. EM fungi may have a dual role: to support growth of fast-growing genotypes under low grass competition and to maintain growth of slow-growing genotypes under intensifying competition.
  • Wang, Linping; Poque, Sylvain; Valkonen, Jari P. T. (2019)
    Background Virus diseases caused by co-infection with Sweet potato feathery mottle virus (SPFMV) and Sweetpotato chlorotic stunt virus (SPCSV) are a severe problem in the production of sweetpotato (Ipomoea batatas L.). Traditional molecular virus detection methods include nucleic acid-based and serological tests. In this study, we aimed to validate the use of a non-destructive imaging-based plant phenotype platform to study plant-virus synergism in sweetpotato by comparing four virus treatments with two healthy controls. Results By monitoring physiological and morphological effects of viral infection in sweetpotato over 29 days, we quantified photosynthetic performance from chlorophyll fluorescence (ChlF) imaging and leaf thermography from thermal infrared (TIR) imaging among sweetpotatoes. Moreover, the differences among different treatments observed from ChlF and TIR imaging were related to virus accumulation and distribution in sweetpotato. These findings were further validated at the molecular level by related gene expression in both photosynthesis and carbon fixation pathways. Conclusion Our study validated for the first time the use of ChlF- and TIR-based imaging systems to distinguish the severity of virus diseases related to SPFMV and SPCSV in sweetpotato. In addition, we demonstrated that the operating efficiency of PSII and photochemical quenching were the most sensitive parameters for the quantification of virus effects compared with maximum quantum efficiency, non-photochemical quenching, and leaf temperature.
  • Cui, Jin; Mackenzie, Kathryn; Eeckhaut, Tom; Müller, Renate; Lütken, Henrik (2019)
    A high yield of isolated protoplasts and efficient regeneration protocols are prerequisites for successful development of somatic hybrids. In the present study, protoplast isolation and regeneration were evaluated in 12 Kalanchoe accessions belonging to nine species. The highest protoplast yield was obtained from K. blossfeldiana Charming Red Meadow' with 10.780.51x10(5) protoplasts per gram fresh weight. We observed significant differences of protoplast yield while there was no distinct difference in viability among the accessions. Seven accessions reached the microcolony stage and four developed microcalli in medium supplemented with 1.0mg/l 1-naphthaleneacetic acid (NAA), 0.5mg/l 6-benzylaminopurine (BAP) and 0.5mg/l 2,4-dichlorophenoxy acetic acid (2,4-D). Using five selected accessions we optimized the PGR (plant growth regulators) concentrations using combinations of NAA, BAP and 2,4-D. K. blossfeldiana cultivars Charming Red Meadow' and Paris' produced significantly different numbers of calli depending on the PGR concentrations. For plant regeneration, the medium was supplemented with 1mg/l NAA and 2mg/l BAP or 2mg/l zeatin. Shoots were regenerated on medium supplemented with NAA and BAP for K. blossfeldiana Charming Red Meadow' and K. blossfeldiana Paris'. The plants successfully developed roots on the medium supplemented with IAA. The medium containing zeatin induced root formation directly from callus in K. blossfeldiana Charming Red Meadow'. Our findings have the potential to facilitate the use of Kalanchoe species in somatic hybridization breeding programs. Key Message The study revealed a strong genotype-dependent efficiency of colony and microcallus formation. Plants were regenerated from two Kalanchoe blossfeldiana cultivars on medium supplemented with NAA and BAP.
  • Chen, Shengxian; Yi, Lita; Korpelainen, Helena; Yu, Fei; Liu, Meihua (2020)
    Drought stress influences the growth of plants and thus grafting has been widely used to improve tolerance to abiotic stresses. Poplars possess sex-specific responses to drought stress, but how male or female rootstock affect the grafted plant is little known. To explore the mechanisms underlying changes in drought tolerance caused by grafting, we investigated the changes in growth, leaf traits, gas exchange and antioxidant enzyme activities of reciprocally grafted seedlings between Populus euramericana cv. "Nanlin895" (NL-895) (female) and Populus deltiodes cv."3412" (NL-3412) (male) under water deficit stress with 30% field capacity for 30 d. Results showed that drought stress affected adversely growth, morphological, and physiological characteristics in all seedlings studied. Grafted seedlings with male roots can effectively alleviated the inhibition of growth induced by drought stress, as shown by higher WUE, activities of SOD, POD and CAT, and lower levels of lipid peroxidation. Male seedlings with female roots were found to be less tolerance to drought than non-grafted male clones and female scions with male roots, but more tolerance than non-grafted female clones. This results suggested that drought tolerance of grafted seedlings is primarily caused by the rootstock, although the scion also affects the grafted plant. Thus, paying attention on the root genotype can provide an important means of improving the drought tolerance of poplars.
  • Han, Qingquan; Guo, Qingxue; Korpelainen, Helena; Niinemets, Ulo; Li, Chunyang (2019)
    To increase yield and/or enhance resistance to diseases, grafting is often applied in agriculture and horticulture. Interspecific grafting could possibly be used in forestry as well to improve drought resistance, but our understanding of how the rootstock of a more drought-resistant species can affect the grafted plant is very limited. Reciprocal grafts of two poplar species, Populus cathayana Rehder (less drought-resistant, C) and Populus deltoides Bart. ex Marsh (more drought-resistant, D) were generated. Four grafting combinations (scion/rootstock: C/C, C/D, D/D and D/C) were subjected to well-watered and drought stress treatments. C/D and D/C had a higher diameter growth rate, leaf biomass, intrinsic water-use efficiency (WUEi) and total non-structural carbohydrate (NSC) content than C/C and D/D in well-watered condition. However, drought caused greater differences between P. deltoides-rooted and P. cathayana-rooted grafting combinations, especially between C/D and D/C. The C/D grafting combination showed higher resistance to drought, as indicated by a higher stem growth rate, net photosynthetic rate, WUEi, leaf water potential, proline concentration and NSC concentration and maintenance of integrity of the leaf cellular ultrastructure under drought when compared with D/C. D/C exhibited severely damaged cell membranes, mitochondria and chloroplasts under drought. The scion genotype caused a strong effect on the root proline concentration: the P. cathayana scion increased the root proline concentration more than the P. deltoides scion (C/C vs D/C and C/D vs D/D) under water deficit. Our results demonstrated that mainly the rootstock was responsible for the drought resistance of grafting combinations. Grafting of the P. cathayana scion onto P. deltoides rootstock resulted in superior growth and biomass when compared with the other three combinations both in well-watered and drought stress conditions.
  • Liu, Miao; Liu, Xiucheng; Zhao, Yang; Korpelainen, Helena; Li, Chunyang (2022)
    Nitrogen (N) partitioning within a leaf affects leaf photosynthesis and adaptation to environmental fluctuations. However, how plant sex influences leaf N allocation and its tradeoffs in acclimation to drought, excess salt and their combination remains unknown. Here, leaf N allocation between the photosynthetic and non-photosynthetic apparatus and among the components of the photosynthesis in Populus cathayana Rehder females and males were investigated under drought, salt and their combination to clarify the underlying mechanism. We found that males with a lower leaf N allocation (NL) into non-protein N (Nnp), showed a greater leaf N allocation into photosynthetic apparatus, especially into the carboxylation component under all treatments, and a greater leaf N allocation into cell wall under drought and salt stress alone, consequently causing higher photosynthetic N use efficiency (PNUE) and tolerance to stresses. Conversely, females had a greater leaf N allocation into Nnp under all treatments than males and a lower leaf photosynthetic N (NP) allocation. There was a tradeoff in leaf N allocation among photosynthetic apparatus (NP/NL), cell wall (NCW/NL) and Nnp, which explained plant responses to drought, salt and their combination. Moreover, the leaf N allocation into the carboxylation component could explain the intersexual difference in responses to all treatments, while leaf cell wall N (NCW) and Nnp reflected intrasexual differences among treatments in both sexes. These findings indicate sex-specific strategies in coping with drought, salt and their combination that relate to leaf N allocation, which may contribute to sex-specific photosynthesis and niche segregation.
  • Liu, Weiwei; Atherton, Jon; Mõttus, Matti; Gastellu-Etchegorry, Jean-Philippe; Malenovský, Zbyněk; Raumonen, Pasi; Åkerblom, Markku; Mäkipää, Raisa; Porcar-Castell, Albert (2019)
    Solar-induced chlorophyll fluorescence (SIF) has been shown to be a suitable remote sensing proxy of photosynthesis at multiple scales. However, the relationship between fluorescence and photosynthesis observed at the leaf level cannot be directly applied to the interpretation of retrieved SIF due to the impact of canopy structure. We carried out a SIF modelling study for a heterogeneous forest canopy considering the effect of canopy structure in the Discrete Anisotropic Radiative Transfer (DART) model. A 3D forest simulation scene consisting of realistic trees and understory, including multi-scale clumping at branch and canopy level, was constructed from terrestrial laser scanning data using the combined model TreeQSM and FaNNI for woody structure and leaf insertion, respectively. Next, using empirical data and a realistic range of leaf-level biochemical and physiological parameters, we conducted a local sensitivity analysis to demonstrate the potential of the approach for assessing the impact of structural, biochemical and physiological factors on top of canopy (TOC) SIF. The analysis gave insight into the factors that drive the intensity and spectral properties of TOC SIF in heterogeneous boreal forest canopies. DART simulated red TOC fluorescence was found to be less affected by biochemical factors such as chlorophyll and dry matter contents or the senescent factor than far-red fluorescence. In contrast, canopy structural factors such as overstory leaf area index (LAI), leaf angle distribution and fractional cover had a substantial and comparable impact across all SIF wavelengths, with the exception of understory LAI that affected predominantly far-red fluorescence. Finally, variations in the fluorescence quantum efficiency (Fqe) of photosystem II affected all TOC SIF wavelengths. Our results also revealed that not only canopy structural factors but also understory fluorescence should be considered in the interpretation of tower, airborne and satellite SIF datasets, especially when acquired in the (near-) nadir viewing direction and for forests with open canopies. We suggest that the modelling strategy introduced in this study, coupled with the increasing availability of TLS and other 3D data sources, can be applied to resolve the interplay between physiological, biochemical and structural factors affecting SIF across ecosystems and independently of canopy complexity, paving the way for future SIF-based 3D photosynthesis models.
  • Yu, Lei; Dong, Haojie; Lie, Zhijun; Hang, Zhanjiang; Korpelainen, Helena; Li, Chunyang (2020)
    Aims Drought and salinity are severe abiotic stress factors, which limit plant growth and productivity, particularly in desert regions. In this study, we employed two desert poplars, Populus euphratica Oliver and Populus pruinosa Schrenk seedlings, to compare their tolerance to drought, salinity and combined stress. Methods We investigated species-specific responses of P. euphratica and P. pruinosa in growth, photosynthetic capacity and pigment contents, nonstructural carbohydrate concentrations, Cl- allocation, osmotic regulation and the accumulation of reactive oxygen species (ROS) under drought, salinity and the combined stress. Important Findings Populus pruinosa exhibited greater growth inhibitory effects, photosynthesis decline, stomata! closure and ROS accumulation, and lower antioxidant enzyme activities and osmotic regulation compared with P. euphratica under drought, salinity and especially under their combined stress. On the other hand, salt-stressed P. euphratica plants restricted salt transportation from roots to leaves, and allocated more Cl- to coarse roots and less to leaves, whereas salt-stressed P. pruinosa allocated more Cl- to leaves. It was shown that there is species-specific variation in these two desert poplars, and P. pruinosa suffers greater negative effects compared with P. euphratica under drought, salinity and especially under the combined stress. Therefore, in ecological restoration and afforestation efforts, species-specific responses and tolerances of these two poplar species to drought and salinity should be considered under climate change with increasing drought and soil salinity developing.
  • Xu, Shan; Atherton, Jon; Riikonen, Anu; Zhang, Chao; Oivukkamaki, Jaakko; MacArthur, Alasdair; Honkavaara, Eija; Hakala, Teemu; Koivumaki, Niko; Liu, Zhigang; Porcar-Castell, Albert (2021)
    Solar-induced Fluorescence (SIF) has an advantage over greenness-based Vegetation Indices in detecting drought. This advantage is the mechanistic coupling between SIF and Gross Primary Productivity (GPP). Under water stress, SIF tends to decrease with photosynthesis, due to an increase in non-photochemical quenching (NPQ), resulting in rapid and/or sustained reductions in the fluorescence quantum efficiency (phi F). Water stress also affects vegetation structure via highly dynamic changes in leaf angular distributions (LAD) or slower changes in leaf area index (LAI). Critically, these responses are entangled in space and time and their relative contribution to SIF, or to the coupling between SIF and GPP, is unclear. In this study, we quantify the relative effect of structural and photosynthetic dynamics on the diurnal and spatial variation of canopy SIF in a potato crop in response to a replicated paired-plot water stress experiment. We measured SIF using two platforms: a hydraulic lift and an Unmanned Aerial Vehicle (UAV) to capture temporal and spatial variation, respectively. LAD parameters were estimated from point clouds and photographic data and used to assess structural dynamics. Leaf phi F estimated from PAM fluorescence measurements were used to represent variations in photosynthetic regulation. We also measured foliar pigments, operating quantum yield of photosystem II (PSII), photosynthetic gas exchange, stomatal conductance and LAI. We used a radiative transfer model (SCOPE) to provide a means of decoupling structural and photosynthetic factors across the diurnal and spatial domains. The results demonstrate that diurnal variation in SIF is driven by photosynthetic and structural dynamics. The influence of phi F was prominent in the diurnal SIF response to water stress, with reduced fluorescence efficiencies in stressed plants. Structural factors dominated the spatial response of SIF to water stress over and above phi F. The results showed that the relationship between SIF and GPP is maintained in response to water stress where adjustments in NPQ and leaf angle co-operate to enhance the correlation between SIF and GPP. This study points to the complexity of interpreting and modelling the spatiotemporal connection between SIF and GPP which requires simultaneous knowledge of vegetation structural and photosynthetic dynamics.
  • Yrttimaa, Tuomas; Luoma, Ville; Saarinen, Ninni; Kankare, Ville; Junttila, Samuli; Holopainen, Markus; Hyyppä, Juha; Vastaranta, Mikko (2020)
    Terrestrial laser scanning (TLS) has been adopted as a feasible technique to digitize trees and forest stands, providing accurate information on tree and forest structural attributes. However, there is limited understanding on how a variety of forest structural changes can be quantified using TLS in boreal forest conditions. In this study, we assessed the accuracy and feasibility of TLS inquantifying changes in the structure of boreal forests. We collected TLS data and field reference from 37 sample plots in 2014 (T1) and 2019 (T2). Tree stems typically have planar, vertical, and cylindricalcharacteristics in a point cloud, and thus we applied surface normal filtering, point cloud clustering, and RANSAC-cylinder filtering to identify these geometries and to characterize trees and foreststands at both time points. The results strengthened the existing knowledge that TLS has the capacity to characterize trees and forest stands in space and showed that TLS could characterize structural changes in time in boreal forest conditions. Root-mean-square-errors (RMSEs) in the estimates for changes in the tree attributes were 0.99–1.22 cm for diameter at breast height (∆dbh), 44.14–55.49 cm2 for basal area (∆g), and 1.91–4.85 m for tree height (∆h). In general, tree attributes were estimated more accurately for Scots pine trees, followed by Norway spruce and broadleaved trees. At the forest stand level, an RMSE of 0.60–1.13 cm was recorded for changes in basal area-weighted meandiameter (∆Dg), 0.81–2.26 m for changes in basal area-weighted mean height (∆Hg), 1.40–2.34 m2 /ha for changes in mean basal area (∆G), and 74–193 n/ha for changes in the number of trees per hectare (∆TPH). The plot-level accuracy was higher in Scots pine-dominated sample plots than in Norway spruce-dominated and mixed-species sample plots. TLS-derived tree and forest structural attributes at time points T1 and T2 differed significantly from each other (p < 0.05). If there was an increase or decrease in dbh, g, h, height of the crown base, crown ratio, Dg, Hg, or G recorded in the field, a similar outcome was achieved by using TLS. Our results provided new information on the feasibility of TLS for the purposes of forest ecosystem growth monitoring.
  • Klem, Karel; Holub, Petr; Stroch, Michal; Nezval, Jakub; Spunda, Vladimir; Triska, Jan; Jansen, Marcel A. K.; Robson, T. Matthew; Urban, Otmar (2015)
    The main objective of this study was to determine the effects of acclimation to ultraviolet (UV) and photosynthetically active radiation (PAR) on photoprotective mechanisms in barley leaves. Barley plants were acclimated for 7 days under three combinations of high or low UV and PAR treatments ([UV-PAR-], [UV-PAR+], [UV+PAR+]). Subsequently, plants were exposed to short-term high radiation ;stress (HRS; defined by high intensities of PAR - 1000 mu mol m(-2) s(-1), UV-A - 10 W m(-2) and UV-B 2 W m(-2) for 4 h), to test their photoprotective capacity. The barley variety sensitive to photooxidative stress (Barke) had low constitutive flavonoid content compared to the resistant variety (Bonus) under low UV and PAR intensities. The accumulation of lutonarin and 3-feruloylquinic acid, but not of saponarin, was greatly enhanced by high PAR and further increased by UV exposure. Acclimation of plants to both high UV and PAR intensities also increased the total pool of xanthophyll-cycle pigments (VAZ). Subsequent exposure to HRS revealed that prior acclimation to UV and PAR was able to ameliorate the negative consequences of HRS on photosynthesis. Both total contents of epidermal flavonols and the total pool of VAZ were closely correlated with small reductions in light-saturated CO2 assimilation rate and maximum quantum yield of photosystem II photochemistry caused by HRS. Based on these results, we conclude that growth under high PAR can substantially increase the photoprotective capacity of barley plants compared with plants grown under low PAR. However, additional UV radiation is necessary to fully induce photoprotective mechanisms in the variety Barke. This study demonstrates that UV-exposure can lead to enhanced photoprotective capacity and can contribute to the induction of tolerance to high radiation stress in barley. (C) 2015 Elsevier Masson SAS. All rights reserved.
  • Solanki, Twinkle; Aphalo, Pedro J.; Neimane, Santa; Hartikainen, Saara Maria; Pieristè, Marta; Shapiguzov, Alexey; Porcar Castell, Juan Alberto; Atherton, Jonathan Mark; Heikkilä, Anu; Robson, Thomas Matthew (2019)
    Evergreen plants in boreal biomes undergo seasonal hardening and dehardening adjusting their photosynthetic capacity and photopmtection; acclimating to seasonal changes in temperature and irradiance. Leaf epidermal ultraviolet (UV)-screening by flavonols responds to solar radiation, perceived in part through increased ultraviolet-B (UV-B) radiation, and is a candidate trait to provide cross-photoprotection. At Hyytiala Forestry Station, central Finland, we examined whether the accumulation of flavonols was higher in leaves of Vaccinium vitis-idaea L. growing above the snowpack compared with those below the snowpack. We found that leaves exposed to colder temperatures and higher solar radiation towards the top of hummocks suffered greater photoinhibition than those at the base of hummocks. Epidermal UV-screening was highest in upper-hummock leaves, particularly during winter when lower leaves were beneath the snowpack. There was also a negative relationship between indices of flavonols and anthocyanins across all leaves suggesting fine-tuning of flavonoid composition for screening vs. antioxidant activity in response to temperature and irradiance. However, the positive correlation between the maximum quantum yield of photosystem II photochemistry (F-v/F-m) and flavonol accumulation in upper hummock leaves during dehardening did not confer on them any greater cross-protection than would be expected from the general relationship of F-v/F-m with temperature and irradiance (throughout the hummocks). Irrespective of timing of snow-melt, photosynthesis fully recovered in all leaves, suggesting that V. vills-idaea has the potential to exploit the continuing trend for longer growing seasons in central Finland without incurring significant impairment from reduced duration of snow cover.