Browsing by Subject "LEAF-LITTER DECOMPOSITION"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Jauhiainen, Jyrki; Page, Susan E.; Vasander, Harri (2016)
    Agricultural and other land uses on ombrotrophic lowland tropical peat swamps typically lead to reduced vegetation biomass and water table drawdown. We review what is known about greenhouse gas (GHG) dynamics in natural and degraded tropical peat systems in south-east Asia, and on this basis consider what can be expected in terms of GHG dynamics under restored conditions. Only limited in situ data are available on the effects of restoration and the consequences for peat carbon (C) dynamics. Hydrological restoration seeks to bring the water table closer to the peat surface and thus re-create near-natural water table conditions, in order to reduce wildfire risk and associated fire impacts on the peat C store, as well as to reduce aerobic peat decomposition rates. However, zero emissions are unlikely to be achieved due to the notable potential for carbon dioxide (CO2) production from anaerobic peat decomposition processes. Increased vegetation cover (ideally woody plants) resulting from restoration will increase shading and reduce peat surface temperatures, and this may in turn reduce aerobic decomposition rates. An increase in litter deposition rate will compensate for C losses by peat decomposition but also increase the supply of labile C, which may prime decomposition, especially in peat enriched with recalcitrant substrates. The response of tropical peatland GHG emissions to peatland restoration will also vary according to previous land use and land use intensity.
  • Riutta, Terhi; Clack, Henry; Crockatt, Martha; Slade, Eleanor M. (2016)
    Although studies on edge effects on species richness and abundance are numerous, the responses of ecosystem processes to these effects have received considerably less attention. How ecosystem processes respond to edge effects is particularly important in temperate forests, where small fragments and edge habitats form a considerable proportion of the total forest area. Soil fauna are key contributors to decomposition and soil biogeochemical cycling processes. Using the bait lamina technique, we quantified soil fauna feeding activity, and its dependence on soil moisture and distance to the edge in a broad-leaved forest in Southern England. Feeding activity was 40% lower at the forest edge than in the interior, and the depth of edge influence was approximately 75 m. A watering treatment showed that moisture limitation was the main driver of the reduced feeding activity at the edge. In England, only 33% of the forest area is greater than 75 m from the edge. Therefore, assuming that the results from this single-site study are representative for the landscape, it implies that only one- third of the forest area in England supports activity levels typical for the forest core, and that edge effects reduce the mean feeding activity across the landscape by 17% (with lower and upper 90% confidence intervals of 1.3 and 23%, respectively). Changing climatic conditions, such as summer droughts may exacerbate such effects as edges lose water faster than the forest interior. The results highlight the importance of taking edge effects into account in ecological studies and forest management planning in highly fragmented landscapes.
  • Zhu, Yuhao; Merbold, Lutz; Leitner, Sonja; Pelster, David E.; Okoma, Sheila Abwanda; Ngetich, Felix; Onyango, Alice Anyango; Pellikka, Petri; Butterbach-Bahl, Klaus (2020)
    Aims Decomposition of manure deposited onto pasture from grazing animals represents an important process for carbon (C) and nitrogen (N) cycles in grassland systems. However, studies investigating manure decomposition are scarce; especially in sub-Saharan Africa (SSA). Methods In this study, we measured decomposition of three types of animal manure (cattle, sheep, goat) over >1 year using litter bags at four climatically different sites across Kenya. Results Manure dry matter, total C, total N and ammonium concentrations decreased exponentially, with the most rapid decrease occurring during the first few weeks following application, followed by slower changes during the following 2-3 months. Rates of N mineralization were lower than those for C mineralization, resulting in decreasing C/N ratios over time. Generally, cattle manure decomposed faster than sheep or goat manure despite having a higher initial C/N ratio and lower N concentration, with decomposition rates for dry matter ranging from 0.200 to 0.989 k year(-1). Cellulose decomposed first, while lignin concentrations increased among all manure types and at all sites. Conclusions We found that total manure decomposition rates were positively correlated with cumulative precipitation and aridity index, but negatively correlated with mean temperature. Our results show much slower decomposition rates of manures in semi-arid tropical environments of East Africa as compared to the few previous studies in temperate climates.
  • Pieristè, Marta; Neimane, Santa; Solanki, Twinkle; Nybakken, Line; Jones, Alan G.; Forey, Estelle; Chauvat, Matthieu; Ņečajeva, Jevgenija; Robson, T Matthew (2020)
    Depending on the environment, sunlight can positively or negatively affect litter decomposition, through the ensemble of direct and indirect processes constituting photodegradation. Which of these processes predominate depends on the ecosystem studied and on the spectral composition of sunlight received. To examine the relevance of photodegradation for litter decomposition in forest understoreys, we filtered ultraviolet radiation (UV) and blue light from leaves of Fagus sylvatica and Bettda pendula at two different stages of senescence in both a controlled-environment experiment and outdoors in four different forest stands (Picea abies, Pagus sylvatica, Acer platanoides, Betula pendula). Controlling for leaf orientation and initial differences in leaf chlorophyll and flavonol concentrations; we measured mass loss at the end of each experiment and characterised the phenolic profile of the leaf litter following photodegradation. In most forest stands, less mass was lost from decomposing leaves that received solar UV radiation compared with those under UV-attenuating filters, while in the controlled environment UV-A radiation either slightly accelerated or had no significant effect on photodegradation, according to species identity. Only a few individual phenolic compounds were affected by our different filter treatments, but photodegradation did affect the phenolic profile. We can conclude that photodegradation has a small stand- and species-specific effect on the decomposition of surface leaf litter in forest understoreys during the winter following leaf fall in southern Finland. Photodegradation was wavelength-dependent and modulated by the canopy species filtering sunlight and likely creating different combinations of spectral composition, moisture, temperature and snowpack characteristics.