Browsing by Subject "LEAF-LITTER"

Sort by: Order: Results:

Now showing items 1-9 of 9
  • Burgazzi, Gemma; Laini, Alex; Ovaskainen, Otso; Sacco, Mattia; Stubbington, Rachel; Viaroli, Pierluigi (2020)
    According to metacommunity theories, the structure of natural communities is the result of both environmental filtering and spatial processes, with their relative importance depending on factors including local habitat characteristics, functional features of organisms, and the spatial scale considered. However, few studies have explored environmental and spatial processes in riverine systems at local scales, explicitly incorporating spatial coordinates into multi-taxa distribution models. To address this gap, we conducted a small-scale study to discriminate between abiotic and biotic factors affecting the distribution of aquatic macroinvertebrates, applying metacommunity concepts. We studied a mountain section in each of three perennial streams within the Po River Basin (northern Italy). We sampled macroinvertebrates both in summer and winter, using specific in situ 50-point random sampling grids. Environmental factors, including benthic organic matter (BOM), flow velocity, water depth, and substrate were recorded together with spatial coordinates for each sampling point. The relationships between community metrics (taxon richness, abundance, biomass, biomass-abundance ratio, and functional feeding groups) and explanatory variables (environmental and spatial) were assessed using generalised additive models. The influence of the explanatory variables on community structure was analysed with joint species distribution models. Environmental variables-primarily BOM-were the main drivers affecting community metrics, whereas the effects of spatial variables varied among metrics, streams, and seasons. During summer, community structure was strongly affected by BOM and spatial position within the riverbed, the latter probably being a proxy for mass effects mediated by biotic and stochastic processes. In contrast, community structure was mainly shaped by hydraulic variables in winter. Using macroinvertebrate communities as a model group, our results demonstrate that metacommunity concepts can explain small-scale variability in community structure. We found that both environmental filtering and biotic processes shape local communities, with the strength of these drivers depending on the season. These insights provide baseline knowledge that informs our understanding of ecological responses to environmental variability in contexts including restoration ecology, habitat suitability modelling, and biomonitoring.
  • Mäki, Mari; Heinonsalo, Jussi; Hellen, Heidi; Back, Jaana (2017)
    Boreal forest floor emits biogenic volatile organic compounds (BVOCs) from the understorey vegetation and the heterogeneous soil matrix, where the interactions of soil organisms and soil chemistry are complex. Earlier studies have focused on determining the net exchange of VOCs from the forest floor. This study goes one step further, with the aim of separately determining whether the photosynthesized carbon allocation to soil affects the isoprenoid production by different soil organisms, i.e., decomposers, mycorrhizal fungi, and roots. In each treatment, photosynthesized carbon allocation through roots for decomposers and mycorrhizal fungi was controlled by either preventing root ingrowth (50 mu m mesh size) or the ingrowth of roots and fungi (1 mu m mesh) into the soil volume, which is called the trenching approach. Isoprenoid fluxes were measured using dynamic (steady-state flow-through) chambers from the different treatments. This study aimed to analyze how important the understorey vegetation is as a VOC sink. Finally, a statistical model was constructed based on prevailing temperature, seasonality, trenching treatments, understory vegetation cover, above canopy photosynthetically active radiation (PAR), soil water content, and soil temperature to estimate isoprenoid fluxes. The final model included parameters with a statistically significant effect on the isoprenoid fluxes. The results show that the boreal forest floor emits monoterpenes, sesquiterpenes, and isoprene. Monoterpenes were the most common group of emitted isoprenoids, and the average flux from the non-trenched forest floor was 23 mu gm(-2) h(-1). The results also show that different biological factors, including litterfall, carbon availability, biological activity in the soil, and physico-chemical processes, such as volatilization and absorption to the surfaces, are important at various times of the year. This study also discovered that understorey vegetation is a strong sink of monoterpenes. The statistical model, based on prevailing temperature, seasonality, vegetation effect, and the interaction of these parameters, explained 43% of the monoterpene fluxes, and 34-46% of individual alpha pinene, camphene, beta-pinene, and Delta(3)-carene fluxes.
  • Berg, Björn (2018)
    Decomposition of foliar litter may be complete or proceed at a progressively lower rate to become zero and a limit value for decomposition may be estimated. Limit values for decomposition have been found to range from 100% accumulated mass loss to 42%, resulting in 'stable' fractions of 0 and 58%, respectively. A limit value does not necessarily mean a complete stop in decomposition but litter mass loss may proceed at a very low rate. An asymptotic function is used to estimate limit value/stable fraction, separating a readily decomposed and a stable residue. The stabilized litter fraction defined as (100 - limit value)/100 may be used for estimating the accumulation rate of stable carbon (C) in organic layers.
  • Maria Ariza, Gloria; Jacome, Jorge; Eduardo Esquivel, Hector; Kotze, Johan D. (2021)
    Little is known about the successional dynamics of insects in the highly threatened tropical dry forest (TDF) ecosystem. For the first time, we studied the response of carabid beetles to vegetal succession and seasonality in this ecosystem in Colombia. Carabid beetles were collected from three TDF habitat types in two regions in Colombia: initial successional state (pasture), early succession, and intermediate succession (forest). The surveys were performed monthly for 13 months in one of the regions (Armero) and during two months, one in the dry and one in the wet season, in the other region (Cambao). A set of environmen-tal variables were recorded per month at each site. Twenty-four carabid beetle species were collected during the study. Calosoma alternans and Megacephala affinis were the most abundant species, while most species were of low abundance. Forest and pasture beetle assemblages were distinct, while the early succession assemblage overlapped with these assemblages. Canopy cover, litter depth, and soil and air temperatures were important in structuring the assemblages. Even though seasonality did not affect the carabid beetle assemblage, individual species responded positively to the wet season. It is shown that early successional areas in TDF could potentially act as habitat corridors for species to recolonize forest areas, since these successional areas host a number of species that inhabit forests and pastures. Climatic variation, like the El Nino episode during this study, appears to affect the carabid beetle assemblage negatively, exasperating concerns of this already threatened tropical ecosystem.
  • Riikonen, Anu; Pumpanen, Jukka; Mäki, Mari Jasmiina; Nikinmaa, Eero (2017)
    We assessed the net carbon (C) sequestration dynamics of street tree plantings based on 10 years of measurements at two case study sites each with different tree species in Helsinki, Finland. We assessed C loss from tree soils and tree C accumulation, tested the applicability of pre-existing growth and biomass equations against observations, and estimated the time point for the beginning of net C sequestration for the studied street tree plantings. The tree woody biomass C accumulation in the first 10 years after planting was 18-32 kg per tree. At the same time the C loss from the growth media was at least 170 kg per growth media volume (25 m(3)) per tree. If this soil C loss was accounted for, the net C sequestration would begin, at best, approximately 30 years after planting. Biomass equations developed for traditional forests predicted more stem biomass and less leaf and branch biomass than measured for the species examined, but total aboveground biomass was generally well predicted.
  • Gautam, Mukesh Kumar; Lee, Kwang-Sik; Berg, Bjorn; Song, Byeong-Yeol (2020)
    Evaluating the decomposition-based change dynamics of various elements in plant litter is important for improving our understanding about their biogeochemical cycling in ecosystems. We have studied the concentrations of major, trace, and rare earth elements (REEs) (34 elements) in green tissue litter, and soil and their dynamics in the decomposing litters of successional annual fleabane (Erigeron annuus) and silvergrass (Miscanthus sinensis). Concentrations of major and trace elements in the litter of annual fleabane were 1.02-2.71 times higher compared to silvergrass. For REEs the difference between the two litter types for elements studied was in the range of 1.02-1.29 times. Both the litters showed a general decrease in the concentrations of elements in the initial stages of decomposition (60-90 days). All the major and trace elements (except for Na) in silvergrass showed a net increase in concentration at the end of the decomposition study (48.9-52.5% accumulated mass loss). Contrastingly, a few trace elements (Mn, Mo, Sr, Zn, Sb, and Cd) in annual fleabane showed a net decrease in their concentrations. For REEs, there was an increase in concentrations as well as in net amounts in both litter types. Similarities observed in the dynamics together with high and significant correlations among them likely suggest their common source. The higher concentrations of REEs in soil likely suggest its role in the net increase in REEs' concentrations and amount in litter during decomposition. (C) 2020 Elsevier B.V. All rights reserved.
  • Adamczyk, Bartosz; Heinonsalo, Jussi; Simon, Judy (2020)
    Abstract Organic matter decomposition plays a major role in the cycling of carbon (C) and nutrients in terrestrial ecosystems across the globe. Climate change accelerates the decomposition rate to potentially increase the release of greenhouse gases and further enhance global warming in the future. However, fractions of organic matter vary in turnover times and parts are stabilized in soils for longer time periods (C sequestration). Overall, a better understanding of the mechanisms underlying C sequestration is needed for the development of effective mitigation policies to reduce land-based production of greenhouse gases. Known mechanisms of C sequestration include the recalcitrance of C input, interactions with soil minerals, aggregate formation, as well as its regulation via abiotic factors. In this Minireview, we discuss the mechanisms behind C sequestration including the recently emerging significance of biochemical interactions between organic matter inputs that lead to C stabilization.
  • Adamczyk, Bartosz; Adamczyk, Sylwia; Smolander, Aino; Kitunen, Veikko; Simon, Judy (2018)
    Processes underlying soil organic matter (SOM) transformations are meeting growing interest as SOM contains more carbon (C) than global vegetation and the atmosphere combined. Therefore, SOM is a crucial element of the C cycle, especially in ecosystems rich in organic matter, such as boreal forests. However, climate change may shift the fate of this SOM from C sink into C source, accelerating global warming. These processes require a better understanding of the involved mechanisms driving both the C cycle and the interlinked nitrogen (N) cycle. SOM transformations are balanced by a network of interactions between biological, chemical and physical factors. In this review, we discuss the findings of the most recent studies to the current state of knowledge about the main drivers in SOM transformations. We focus on plant-derived secondary metabolites, as their biochemical traits, especially interactions with soil microbial communities, organic N compounds and enzymes make them potential regulators of SOM decomposition. However, these regulatory abilities of plant-derived compounds are not fully explored.
  • van Dijk, Laura J. A.; Moreira, Xoaquin; Barr, Anna E.; Abdala-Roberts, Luis; Castagneyrol, Bastien; Faticov, Maria; Hardwick, Bess; ten Hoopen, Jan P. J. G.; de la Mata, Raul; Pires, Ricardo Matheus; Roslin, Tomas; Schigel, Dmitry S.; Timmermans, Bart G. H.; Tack, Ayco J. M. (2022)
    The world is rapidly urbanizing, thereby transforming natural landscapes and changing the abundance and distribution of organisms. However, insights into the effects of urbanization on species interactions, and plant-pathogen interactions in particular, are lacking. We investigated the effects of urbanization on powdery mildew infection on Quercus robur at continental and within-city scales. At the continental scale, we compared infection levels between urban and rural areas of different-sized cities in Europe, and investigated whether plant traits, climatic variables and CO2 emissions mediated the effect of urbanization on infection levels. Within one large city (Stockholm, Sweden), we further explored whether local habitat features and spatial connectivity influenced infection levels during multiple years. At the continental scale, infection severity was consistently higher on trees in urban than rural areas, with some indication that temperature mediated this effect. Within Stockholm city, temperature had no effect, while local accumulation of leaf litter negatively affected powdery mildew incidence in one out of three years, and more connected trees had lower infection levels. This study is the first to describe the effects of urbanization on plant-pathogen interactions both within and among cities, and to uncover the potential mechanisms behind the observed patterns at each scale.