Browsing by Subject "LI"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Hiraoka, N.; Yang, Y.; Hagiya, T.; Niozu, A.; Matsuda, K.; Huotari, S.; Holzmann, M.; Ceperley, D. M. (2020)
    We have measured the momentum distribution and renormalization factor Z(kF) in liquid and solid lithium by high-resolution Compton scattering. High-resolution data over a wide momentum range exhibit a clear feature of the renormalization and a sharp drop of momentum densities at the Fermi momentum k(F). These results are compared with those computed by quantum Monte Carlo simulation performed both on a disordered crystal and a liquid exhibiting very good agreement. Asymptotic behavior of the experimental and theoretical momentum distributions are examined to estimate Z(kF). The experimentally obtained Z(kF) = 0.43(-0.01)(+0.11) for liquid Li and 0.54(-0.02)(+0.11) for solid Li are in good agreement with theoretical results of 0.54 +/- 0.01 and 0.64 +/- 0.01, respectively.
  • Srur-Lavi, Onit; Miikkulainen, Ville; Markovsky, Boris; Grinblat, Judith; Talianker, Michael; Fleger, Yafit; Cohen-Taguri, Gili; Mor, Albert; Tal-Yosef, Yosef; Aurbach, Doron (2017)
    In this paper, we studied the influence of LiAlO2 coatings of 0.5, 1 and 2 nm thickness prepared by Atomic Layer Deposition onto LiNi0.8Co0.15Al0.05O2 electrodes, on their electrochemical behavior at 30 and 60 degrees C. It was demonstrated that upon cycling, 2 nm LiAlO2 coated electrodes displayed similar to 3 times lower capacity fading and lower voltage hysteresis comparing to bare electrodes. We established a correlation among the thickness of the LiAlO2 coating and parameters of the self-discharge processes at 30 and 60 degrees C. Significant results on the elevated temperature cycling and aging of bare and LiAlO2 coated electrodes at 4.3 V were obtained and analyzed for the first time. By analyzing of X-ray diffraction patterns of bare and 2 nm coated LiNi0.8Co0.15Al0.05O2 electrodes after cycling, we concluded that cycled materials preserved their original structure described by R-3m space group and no additional phases were detected. (c) The Author(s) 2017. Published by ECS. All rights reserved.