Browsing by Subject "LIDAR DATA"

Sort by: Order: Results:

Now showing items 1-8 of 8
  • Yu, Xiaowei; Litkey, Paula; Hyyppa, Juha; Holopainen, Markus; Vastaranta, Mikko (2014)
  • Junttila, Samuli; Sugano, Junko; Vastaranta, Mikko; Linnakoski, Riikka; Kaartinen, Harri; Kukko, Antero; Holopainen, Markus; Hyyppa, Hannu; Hyyppa, Juha (2018)
    Changing climate is increasing the amount and intensity of forest stress agents, such as drought, pest insects, and pathogens. Leaf water content, measured here in terms of equivalent water thickness (EWT), is an early indicator of tree stress that provides timely information about the health status of forests. Multispectral terrestrial laser scanning (MS-TLS) measures target geometry and reflectance simultaneously, providing spatially explicit reflectance information at several wavelengths. EWT and leaf internal structure affect leaf reflectance in the shortwave infrared region that can be used to predict EWT with MS-TLS. A second wavelength that is sensitive to leaf internal structure but not affected by EWT can be used to normalize leaf internal effects on the shortwave infrared region and improve the prediction of EWT. Here we investigated the relationship between EWT and laser intensity features using multisensor MS-TLS at 690, 905, and 1,550 nm wavelengths with both drought-treated and Endoconidiophora polonica inoculated Norway spruce seedlings to better understand how MS-TLS measurements can explain variation in EWT. In our study, a normalized ratio of two wavelengths at 905 and 1,550 nm and length of seedling explained 91% of the variation (R-2) in EWT as the respective prediction accuracy for EWT was 0.003 g/cm(2) in greenhouse conditions. The relation between EWT and the normalized ratio of 905 and 1,550 nm wavelengths did not seem sensitive to a decreased point density of the MS-TLS data. Based on our results, different EWTs in Norway spruce seedlings show different spectral responses when measured using MS-TLS. These results can be further used when developing EWT monitoring for improving forest health assessments.
  • Viinikka, Arto; Hurskainen, Pekka; Keski-Saari, Sarita; Kivinen, Sonja; Tanhuanpää, Topi; Mäyrä, Janne; Poikolainen, Laura; Vihervaara, Petteri; Kumpula, Timo (2020)
    Sustainable forest management increasingly highlights the maintenance of biological diversity and requires up-to-date information on the occurrence and distribution of key ecological features in forest environments. European aspen (Populus tremulaL.) is one key feature in boreal forests contributing significantly to the biological diversity of boreal forest landscapes. However, due to their sparse and scattered occurrence in northern Europe, the explicit spatial data on aspen remain scarce and incomprehensive, which hampers biodiversity management and conservation efforts. Our objective was to study tree-level discrimination of aspen from other common species in northern boreal forests using airborne high-resolution hyperspectral and airborne laser scanning (ALS) data. The study contained multiple spatial analyses: First, we assessed the role of different spectral wavelengths (455-2500 nm), principal component analysis, and vegetation indices (VI) in tree species classification using two machine learning classifiers-support vector machine (SVM) and random forest (RF). Second, we tested the effect of feature selection for best classification accuracy achievable and third, we identified the most important spectral features to discriminate aspen from the other common tree species. SVM outperformed the RF model, resulting in the highest overall accuracy (OA) of 84% and Kappa value (0.74). The used feature set affected SVM performance little, but for RF, principal component analysis was the best. The most important common VI for deciduous trees contained Conifer Index (CI), Cellulose Absorption Index (CAI), Plant Stress Index 3 (PSI3), and Vogelmann Index 1 (VOG1), whereas Green Ratio (GR), Red Edge Inflection Point (REIP), and Red Well Position (RWP) were specific for aspen. Normalized Difference Red Edge Index (NDRE) and Modified Normalized Difference Index (MND705) were important for coniferous trees. The most important wavelengths for discriminating aspen from other species included reflectance bands of red edge range (724-727 nm) and shortwave infrared (1520-1564 nm and 1684-1706 nm). The highest classification accuracy of 92% (F1-score) for aspen was achieved using the SVM model with mean reflectance values combined with VI, which provides a possibility to produce a spatially explicit map of aspen occurrence that can contribute to biodiversity management and conservation efforts in boreal forests.
  • Kuzmin, Anton; Korhonen, Lauri; Kivinen, Sonja; Hurskainen, Pekka; Korpelainen, Pasi; Tanhuanpää, Topi; Maltamo, Matti; Vihervaara, Petteri; Kumpula, Timo (2021)
    European aspen (Populus tremula L.) is a keystone species for biodiversity of boreal forests.Large-diameter aspens maintain the diversity of hundreds of species, many of which are threatened in Fennoscandia. Due to a low economic value and relatively sparse and scattered occurrence of aspen in boreal forests, there is a lack of information of the spatial and temporal distribution of aspen, which hampers efficient planning and implementation of sustainable forest management practices and conservation efforts. Our objective was to assess identification of European aspen at the individual tree level in a southern boreal forest using high-resolution photogrammetric point cloud (PPC) and multispectral (MSP) orthomosaics acquired with an unmanned aerial vehicle (UAV). The structure-from-motion approach was applied to generate RGB imagery-based PPC to be used for individual tree-crown delineation. Multispectral data were collected using two UAV cameras:Parrot Sequoia and MicaSense RedEdge-M. Tree-crown outlines were obtained from watershed segmentation of PPC data and intersected with multispectral mosaics to extract and calculate spectral metrics for individual trees. We assessed the role of spectral data features extracted from PPC and multispectral mosaics and a combination of it, using a machine learning classifier—Support Vector Machine (SVM) to perform two different classifications: discrimination of aspen from the other species combined into one class and classification of all four species (aspen, birch, pine, spruce) simultaneously. In the first scenario, the highest classification accuracy of 84% (F1-score) for aspen and overall accuracy of 90.1% was achieved using only RGB features from PPC, whereas in the second scenario, the highest classification accuracy of 86 % (F1-score) for aspen and overall accuracy of 83.3% was achieved using the combination of RGB and MSP features. The proposed method provides a new possibility for the rapid assessment of aspen occurrence to enable more efficient forest management as well as contribute to biodiversity monitoring and conservation efforts in boreal forests.
  • Kankare, Ville; Joensuu, Marianna; Vauhkonen, Jari; Holopainen, Markus; Tanhuanpaa, Topi; Vastaranta, Mikko; Hyyppa, Juha; Hyyppa, Hannu; Alho, Petteri; Rikala, Juha; Sipi, Marketta (2014)
  • Tanhuanpää, Topi; Saarinen, Ninni; Kankare, Ville; Nurminen, Kimmo; Vastaranta, Mikko; Honkavaara, Eija; Karjalainen, Mika; Yu, Xiaowei; Holopainen, Markus; Hyyppä, Juha (2016)
    Height models based on high-altitude aerial images provide a low-cost means of generating detailed 3D models of the forest canopy. In this study, the performance of these height models in the detection of individual trees was evaluated in a commercially managed boreal forest. Airborne digital stereo imagery (DSI) was captured from a flight altitude of 5 km with a ground sample distance of 50 cm and corresponds to regular national topographic airborne data capture programs operated in many countries. Tree tops were detected from smoothed canopy height models (CHM) using watershed segmentation. The relative amount of detected trees varied between 26% and 140%, and the RMSE of plot-level arithmetic mean height between 2.2 m and 3.1 m. Both the dominant tree species and the filter used for smoothing affected the results. Even though the spatial resolution of DSI-based CHM was sufficient, detecting individual trees from the data proved to be demanding because of the shading effect of the dominant trees and the limited amount of data from lower canopy levels and near the ground.
  • Niemi, Mikko T.; Vauhkonen, Jari (2016)
    Area-based analyses of airborne laser scanning (ALS) data are an established approach to obtain wall-to-wall predictions of forest characteristics for vast areas. The analyses of sparse data in particular are based on the height value distributions, which do not produce optimal information on the horizontal forest structure. We evaluated the complementary potential of features quantifying the textural variation of ALS-based canopy height models (CHMs) for both supervised (linear regression) and unsupervised (k-Means clustering) analyses. Based on a comprehensive literature review, we identified a total of four texture analysis methods that produced rotation-invariant features of different order and scale. The CHMs and the textural features were derived from practical sparse-density, leaf-off ALS data originally acquired for ground elevation modeling. The features were extracted from a circular window of 254 m(2) and related with boreal forest characteristics observed from altogether 155 field sample plots. Features based on gray-level histograms, distribution of forest patches, and gray-level co-occurrence matrices were related with plot volume, basal area, and mean diameter with coefficients of determination (R-2) of up to 0.63-0.70, whereas features that measured the uniformity of local binary patterns of the CHMs performed poorer. Overall, the textural features compared favorably with benchmark features based on the point data, indicating that the textural features contain additional information useful for the prediction of forest characteristics. Due to the developed processing routines for raster data, the CHM features may potentially be extracted with a lower computational burden, which promotes their use for applications such as pre-stratification or guiding the field plot sampling based solely on ALS data.
  • Vastaranta, Mikko; Saarinen, Ninni; Kankare, Ville; Holopainen, Markus; Kaartinen, Harri; Hyyppa, Juha; Hyyppa, Hannu (2014)