Browsing by Subject "LIFE-CYCLE ASSESSMENT"

Sort by: Order: Results:

Now showing items 1-14 of 14
  • D'amato, Dalia; Gaio, Marco; Semenzin, Elena (2020)
    The emergence of politically driven bioeconomy strategies worldwide calls for considering the ecological issues associated with bio-based products. Traditionally, life cycle analysis (LCA) approaches are key tools used to assess impacts through product life cycles, but they present limitations regarding the accounting of multiple ecosystem service-related issues, at both the land-use and supply chain levels. Based on a systematic review of empirical articles, this study provides insights on using LCA assessments to account for ecosystem service-related impacts in the context of bioeconomy activities. We address the following research questions: what is the state of the art of the literature performing LCA assessments of forest-based bioeconomy activities, including the temporal distribution, the geographic areas and products/processes at study, and the approaches and methods used? 2. Which impacts and related midpoints are considered by the reviewed studies and what types of ecosystem service- related information do they bear? Out of over 600 articles found through the Scopus search, 155 were deemed relevant for the review. The literature focuses on North-America and Europe. Most of the articles assessed the environmental impact of lower-value biomass uses. Climate change was assessed in over 90% of the studies, while issues related to ozone, eutrophication, human toxicity, resource depletion, acidification, and environmental toxicity were assessed in 40% to 60% of the studies. While the impact categories accounted for in the reviewed LCA studies bear information relevant to certain provisioning and regulating services, several ecosystem services (especially cultural ones) remain unaccounted for. The implications of our study are relevant for professionals working in the ecosystem services, circular bioeconomy, and/or LCA communities. (C) 2019 The Authors. Published by Elsevier B.V.
  • Holmgren, Sara; D'amato, Dalia; Giurca, Alexandru (2020)
    This review article examines how social science literature co-produces various imaginaries of forest-based bioeconomy transformations and pathways for reaching desired ends. Based on an analysis of 59 research articles, we find that despite a growing number of social sciences studies on the forest-based bioeconomy, much of the research tends to replicate a bioeconomy imaginary articulated in EU and national bioeconomy policies and strategies. Accordingly, the research primarily reproduces a weak approach to sustainability, which prioritize economic growth and competitiveness. Expectations are largely directed at national and regional corporate interests and forest industrial renewal, while the state has a supportive rather than restricting role. We discuss the findings against the role of social sciences, and conclude that social science scholars may adopt various strategies if interested in opening up forest-based policy debates and offer alternative imaginaries of sustainable bioeconomy transformations.
  • Kyttä, Venla Vilhelmiina; Helenius, Juha; Tuomisto, Hanna (2021)
    The globally growing demand to produce more food with fewer inputs, less energy, and lower greenhouse gas (GHG) emissions challenges current agricultural practices. Recycled fertilizers made of various side streams and types of biomass have been developed mainly to improve nutrient recycling in food systems. However, the knowledge of the impacts of different recycled fertilizers on GHG emissions and energy use is lacking. There is also a need for developing environmental assessment methods for quantifying the impacts of recycling processes, particularly in terms of choosing reasonable methods for co-product allocation. The aims of this study were to address the above mentioned research gaps by i) assessing energy use and GHG emissions of various recycled fertilizers, ii) comparing the recycled fertilizers with mineral fertilizers, and iii) comparing the impacts of using different co-product allocation methods for the recycled fertilizers. Attributional Life Cycle Assessment (LCA) was used for estimating energy use and GHG emissions of recycled fertilizers, including ammonium sulfate, biogas digestate, and meat and bone meal, using kg of nitrogen in the fertilizers as a functional unit. In addition, the energy use and GHG emissions of oat production when using the recycled and mineral fertilizers were quantified. The data were obtained from field experiments, LCA databases, published literature, and fertilizer companies. The life-cycle energy consumption and GHG emissions of recycled fertilizers were found to be lower than that of mineral fertilizer, but also differences between recycled fertilizer products were notable. The biggest differences between fertilizers occurred in manufacturing and transportation. However, this conclusion is highly sensitive to several decisions, such as data sources and LCA methods used. Handling the raw materials of recycled fertilizers as by-products instead of residues adds burdens from primary production to fertilizers. Also handling the materials as waste increases the impacts due to burdens from the recycling process. Since the raw materials of fertilizers have only little economic value, applying economic allocation results to significantly lower impacts than mass allocation. Consequential LCA studies would be needed to improve the understanding of the wider impacts of recycled fertilizers, e.g. considering the benefits of avoided waste management processes. (C) 2020 Elsevier Ltd. All rights reserved.
  • Iordan, Cristina-Maria; Hu, Xiangping; Arvesen, Anders; Kauppi, Pekka; Cherubini, Francesco (2018)
    Background: Forests and forest products can significantly contribute to climate change mitigation by stabilizing and even potentially decreasing the concentration of carbon dioxide (CO2) in the atmosphere. Harvested wood products (HWP) represent a common widespread and cost-efficient opportunity for negative emissions. After harvest, a significant fraction of the wood remains stored in HWPs for a period that can vary from some months to many decades, whereas atmospheric carbon (C) is immediately sequestered by vegetation re-growth. This temporal mismatch between oxidation of HWPs and C uptake by vegetation generates a net sink that lasts over time. The role of temporary carbon storage in forest products has been analysed and debated in the scientific literature, but detailed bottomup studies mapping the fate of harvested materials and quantifying the associated emission profiles at national scales are rare. In this work, we quantify the net CO2 emissions and the temporary carbon storage in forest products in Norway, Sweden and Finland for the period 1960-2015, and investigate their correlation. We use a Chi square probability distribution to model the oxidation rate of C over time in HWPs, taking into consideration specific half-lives of each category of products. We model the forest regrowth and estimate the time-distributed C removal. We also integrate the specific HWP flows with an emission inventory database to quantify the associated life-cycle emissions of fossil CO2, CH4 and N2O. Results: We find that assuming an instantaneous oxidation of HWPs would overestimate emissions of about 1.18 billion t CO2 (cumulative values for the three countries over the period 1960-2015).We also find that about 40 years after 1960, the starting year of our analysis, are sufficient to detect signs of negative emissions. The total amount of net CO2 emissions achieved in 2015 are about -3.8 million t CO2, -27.9 t CO2 and -43.6 t CO2 in Norway, Sweden, and Finland, respectively. Conclusion: We argue for a more explicit accounting of the actual emission rates from HWPs in carbon balance studies and climate impact analysis of forestry systems and products, and a more transparent inclusion of the potential of HWP as negative emissions in perspective studies and scenarios. Simply assuming that all harvested carbon is instantaneously oxidized can lead to large biases and ultimately overlook the benefits of negative emissions of HWPs.
  • Hurmekoski, Elias; Jonsson, Ragnar; Korhonen, Jaana; Jänis, Janne; Mäkinen, Marko; Leskinen, Pekka; Hetemäki, Lauri (2018)
    This study identifies new wood-based products with considerable potential and attractive markets, including textiles, liquid biofuels, platform chemicals, plastics, and packaging. We apply a mixed-methods review to examine how the position of the forest industry in a given value chain determines the respective production value. An assessment is provided as to the degree to which these emerging wood-based products could compensate for the foreseen decline of graphic paper markets in four major forest industry countries: USA, Canada, Sweden, and Finland. A 1%-2% market share in selected global markets implies a potential increase in revenues of 18-75 billion euros per annum in the four selected countries by 2030. This corresponds to 10%-43% of the production value of forest industries in 2016 and compares with a projected decline of graphic paper industry revenue of 5.5 billion euros by 2030. The respective impacts on wood use are manifold, as many of the new products utilize by-products as feedstock. The increase in primary wood use, which is almost entirely attributed to construction and to some extent textiles markets, would be in the range of 15-133 million m(3), corresponding to 2%-21% of the current industrial roundwood use in the selected countries.
  • Miettinen, Jenni; Ollikainen, Markku (2022)
    We examine the emerging forest bioeconomy as an integrated, multi-product industrial ecosystem, where the traditional pulp mills allocate the use of side streams to independent biochemical companies manufacturing bioproducts in the vicinity of the pulp mills. Biochemical companies benefit from the proximity by receiving wood-based side streams at lower costs, and at the same time, pulp mills benefit from having a new source of revenue from selling side streams. We focus on the economic interaction between the pulp mill and the biochemical company, and we study the impacts on the use of wood and profits under perfect and imperfect competition. We demonstrate that the new industrial ecosystem uses more wood than traditional pulp mills, but depending on the side stream, it may promote cascading use of wood-based side streams.
  • Kilpeläinen, A.; Strandman, H.; Grönholm, T.; Ikonen, V. -P.; Torssonen, P.; Kellomaki, S.; Peltola, H. (2017)
    We investigated how the initial age structure of a managed, middle boreal (62A degrees N), Norway spruce-dominated (Picea abies L. Karst.) forest area affects the net climate impact of using forest biomass for energy. The model-based analysis used a gap-type forest ecosystem model linked to a life cycle assessment (LCA) tool. The net climate impact of energy biomass refers to the difference in annual net CO2 exchange between the biosystem using forest biomass (logging residues from final felling) and the fossil (reference) system using coal. In the simulations over the 80-year period, the alternative initial age structures of the forest areas were (i) skewed to the right (dominated by young stands), (ii) normally distributed (dominated by middle-aged stands), (iii) skewed to the left (dominated by mature stands), and (iv) evenly distributed (same share of different age classes). The effects of management on net climate impacts were studied using current recommendations as a baseline with a fixed rotation period of 80 years. In alternative management scenarios, the volume of the growing stock was maintained 20% higher over the rotation compared to the baseline, and/or nitrogen fertilization was used to enhance carbon sequestration. According to the results, the initial age structure of the forest area affected largely the net climate impact of using energy biomass over time. An initially right-skewed age structure produced the highest climate benefits over the 80-year simulation period, in contrast to the left-skewed age structure. Furthermore, management that enhanced carbon sequestration increased the potential of energy biomass to replace coal, reducing CO2 emissions and enhancing climate change mitigation.
  • Kuittinen, Matti; Hautamaki, Ranja; Tuhkanen, Eeva-Maria; Riikonen, Anu; Ariluoma, Mari (2021)
    Purpose Currently, no clear guidance exists for ISO and EN standards of calculating, verifying, and reporting the climate impacts of plants, mulches, and soils used in landscape design and construction. In order to optimise the potential of ecosystem services in the mitigation of greenhouse gas emissions in the built environment, we unequivocally propose their inclusion when assessing sustainability. Methods We analysed the life cycle phases of plants, soils, and mulches from the viewpoint of compiling standard-based Environmental Product Declarations. In comparison to other construction products, the differences of both mass and carbon flows were identified in these products. Results Living and organic products of green infrastructure require an LCA approach of their own. Most importantly, if conventional life cycle guidance for Environmental Product Declarations were to be followed, over time, the asymmetric mass and carbon flows would lead to skewed conclusions. Moreover, the ability of plants to reproduce raises additional questions for allocating environmental impacts. Conclusions We present a set of recommendations that are required for compiling Environmental Product Declarations for the studied products of green infrastructure. In order to enable the quantification of the climate change mitigation potential of these products, it is essential that work for further development of LCA guidance be mandated.
  • Russo, V.; Strever, A. E.; Ponstein, Helena J. (2021)
    Purpose Following the urgency to curb environmental impacts across all sectors globally, this is the first life cycle assessment of different wine grape farming practices suitable for commercial conventional production in South Africa, aiming at better understanding the potentials to reduce adverse effects on the environment and on human health. Methods An attributional life cycle assessment was conducted on eight different scenarios that reduce the inputs of herbicides and insecticides compared against a business as usual (BAU) scenario. We assess several impact categories based on ReCiPe, namely global warming potential, terrestrial acidification, freshwater eutrophication, terrestrial toxicity, freshwater toxicity, marine toxicity, human carcinogenic toxicity and human non-carcinogenic toxicity, human health and ecosystems. A water footprint assessment based on the AWARE method accounts for potential impacts within the watershed. Results and discussion Results show that in our impact assessment, more sustainable farming practices do not always outperform the BAU scenario, which relies on synthetic fertiliser and agrochemicals. As a main trend, most of the impact categories were dominated by energy requirements of wine grape production in an irrigated vineyard, namely the usage of electricity for irrigation pumps and diesel for agricultural machinery. The most favourable scenario across the impact categories provided a low diesel usage, strongly reduced herbicides and the absence of insecticides as it applied cover crops and an integrated pest management. Pesticides and heavy metals contained in agrochemicals are the main contributors to emissions to soil that affected the toxicity categories and impose a risk on human health, which is particularly relevant for the manual labour-intensive South African wine sector. However, we suggest that impacts of agrochemicals on human health and the environment are undervalued in the assessment. The 70% reduction of toxic agrochemicals such as Glyphosate and Paraquat and the 100% reduction of Chlorpyriphos in vineyards hardly affected the model results for human and ecotoxicity. Our concerns are magnified by the fact that manual labour plays a substantial role in South African vineyards, increasing the exposure of humans to these toxic chemicals at their workplace. Conclusions A more sustainable wine grape production is possible when shifting to integrated grape production practices that reduce the inputs of agrochemicals. Further, improved water and related electricity management through drip irrigation, deficit irrigation and photovoltaic-powered irrigation is recommendable, relieving stress on local water bodies, enhancing drought-preparedness planning and curbing CO2 emissions embodied in products.
  • Ponstein, Helena; Ghinoi, Stefano; Steiner, Bodo (2019)
    As wine supply chains become increasingly globalized, sustainability issues take on ever greater importance. This is the first study to analyse the environmental sustainability aspect of greenhouse gas (GHG) emissions from a global wine supply chain perspective, covering just over 90% of Finland's wine imports. Lacking substantial domestic production capacity, virtually all wine consumed in Finland is imported. Finland is comparable to its Nordic neighbours, Sweden and Norway, in this respect. The Life Cycle Assessment (LCA) methodology was combined with sensitivity and scenario analyses to investigate GHG emissions implications from prospective policy changes. Our results spotlight differences related to wine production in the eight main wine producing countries for the Finnish market (Australia, Chile, France, Germany, Italy, Spain, South Africa, and the United States), related logistics, and all packaging types for wine used in Finland (glass bottle, Bag-in-Box, PET bottle, beverage carton, and pouch). We found an average value of 1.23 kg CO2e for 0.75 L wine consumed in Finland, ranging from 0.59 kg CO2e for French wine in a bag-in-box packaging to 1.92 kg CO2e for Australian wine in a glass bottle. After identifying the main GHG emission hotspots in the wine supply chain, our scenario analyses highlight the effects of reducing glass bottle weight, moving away from glass packaging toward bag-inbox, increasing bulk wine export volumes to Finland, and following the European Commission's Energy 2020 strategy which targets increasing energy efficiency by 20 percent.
  • Ruckli, Antonia Katharina; Hoertenhuber, Stefan Josef; Ferrari, Paolo; Guy, Jonathan; Helmerichs, Juliane; Hoste, Robert; Hubbard, Carmen; Kasperczyk, Nadja; Leeb, Christine; Malak-Rawlikowska, Agata; Valros, Anna; Dippel, Sabine (2022)
    Societal interest in all aspects of sustainability has increased. Therefore, pig farmers need to be aware of their strengths and weaknesses in all dimensions of sustainability: economy, environment, social wellbeing, and animal health and welfare. Our aim was to describe and critically discuss the development of a sustainability assessment tool for pig farms and to evaluate its suitability by applying it to 63 European pig farms (13 breeding, 27 breeding-to-finishing, and 23 finishing farms). The multi-criteria assessment tool was developed in several steps (the selection and scaling of indicators and their aggregation and weighting) in order to summarise the indicators into subtheme and theme scores. The indicators contributing the most to the subtheme/theme scores were identified and discussed in order to evaluate the procedure of the development. For example, some indicators, such as Ecological compensation area, Fairness of prices, and Tail docking, for which farms were scored low, were also identified as "real world problems" in other studies. For other sustainability aspects with low performance, the threshold might have been set too ambitiously, e.g., for Number of sows per annual working unit. Furthermore, to analyse the suitability of the tool, we assessed the best and worst median theme scores (good and poor performances) for each dimension, as well as the variability of the performances of the farms within the themes. Some themes were found to be moderate, such as Pig comfort, Biodiversity, or Resilience, whereas others were found to be good, e.g., Water and the Human-animal relationship, as well as several themes of the social wellbeing dimension. Overall, the sustainability tool provides a comprehensive assessment of the sustainability of pig production. Furthermore, this publication contributes to both the theory (development of a robust sustainability tool) and the practice (provision of a tool to assess and benchmark the sustainability on farms). As a next step, a sensitivity analysis should be performed, and the tool should be applied for further development.
  • Järviö, Natasha; Parviainen, Tuure; Maljanen, Netta-Leena; Kobayashi, Yumi; Kujanpää, Lauri; Ercili-Cura, Dilek; Landowski, Christopher P.; Ryynänen, Toni; Nordlund, Emilia; Tuomisto, Hanna (2021)
    Ovalbumin (OVA) produced using the fungus Trichoderma reesei (Tr-OVA) could become a sustainable replacement for chicken egg white protein powder—a widely used ingredient in the food industry. Although the approach can generate OVA at pilot scale, the environmental impacts of industrial-scale production have not been explored. Here, we conducted an anticipatory life cycle assessment using data from a pilot study to compare the impacts of Tr-OVA production with an equivalent functional unit of dried chicken egg white protein produced in Finland, Germany and Poland. Tr-OVA production reduced most agriculture-associated impacts, such as global warming and land use. Increased impacts were mostly related to industrial inputs, such as electricity production, but were also associated with glucose consumption. Switching to low-carbon energy sources could further reduce environmental impact, demonstrating the potential benefits of cellular agriculture over livestock agriculture for OVA production.
  • Svanbäck, Annika; McCrackin, Michelle L.; Swaney, Dennis P.; Linefur, Helena; Gustafsson, Bo G.; Howarth, Robert W.; Humborg, Christoph (2019)
    The separation between crop- and livestock production is an important driver of agricultural nutrient surpluses in many parts of the world. Nutrient surpluses can be symptomatic of poor resource use efficiency and contribute to environmental problems. Thus, it is important not only to identify where surpluses can be reduced, but also the potential policy tools that could facilitate reductions. Here, we explored linkages between livestock production and nutrient flows for the Baltic Sea catchment and discuss management practices and policies that influence the magnitude of nutrient surpluses. We found that the majority of nutrients cycled through the livestock sector and that large nitrogen and phosphorus surpluses often occurred in regions with high livestock density. Imports of mineral fertilizers and feed to the catchment increased overall surpluses, which in turn increased the risk of nutrient losses from agriculture to the aquatic environment. Many things can be done to reduce agricultural nutrient surpluses; an important example is using manure nutrients more efficiently in crop production, thereby reducing the need to import mineral fertilizers. Also, existing soil P reserves could be used to a greater extent, which further emphasizes the need to improve nutrient management practices. The countries around the Baltic Sea used different approaches to manage agricultural nutrient surpluses, and because eight of the coastal countries are members in the European Union (EU), common EU policies play an important role in management. We observed reductions in surpluses between 2000 and 2010 in some countries, which suggested the influence of different approaches to management and policy and that there are opportunities for further improvement. However, the separation between crop and livestock production in agriculture appears to be an underlying cause of nutrient surpluses; thus, further research is needed to understand how policy can address these structural issues and increase sustainability in food production. (C) 2018 The Authors. Published by Elsevier B.V.
  • D'amato, Dalia; Bartkowski, Bartosz; Droste, Nils (2020)
    The bioeconomy is currently being globally promoted as a sustainability avenue involving several societal actors. While the bioeconomy is broadly about the substitution of fossil resources with bio-based ones, three main (competing or complementary) bioeconomy visions are emerging in scientific literature: resource, biotechnology, and agroecology. The implementation of one or more of these visions into strategies implies changes to land use and thus ecosystem services delivery, with notable trade-offs. This review aims to explore the interdisciplinary space at the interface of these two concepts. We reviewed scientific publications explicitly referring to bioeconomy and ecosystem services in their title, abstract, or keywords, with 45 documents identified as relevant. The literature appeared to be emerging and fragmented but eight themes were discernible (in order of decreasing occurrence frequency in the literature): a. technical and economic feasibility of biomass extraction and use; b. potential and challenges of the bioeconomy; c. frameworks and tools; d. sustainability of bio-based processes, products, and services; e. environmental sustainability of the bioeconomy; f. governance of the bioeconomy; g. biosecurity; h. bioremediation. Approximately half of the documents aligned to a resource vision of the bioeconomy, with emphasis on biomass production. Agroecology and biotechnology visions were less frequently found, but multiple visions generally tended to occur in each document. The discussion highlights gaps in the current research on the topic and argues for communication between the ecosystem services and bioeconomy communities to forward both research areas in the context of sustainability science.