Browsing by Subject "LIGHT CURVES"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Pihajoki, Pauli; Mannerkoski, Matias; Nattila, Joonas; Johansson, Peter H. (2018)
    Ray tracing is a central tool for constructing mock observations of compact object emission and for comparing physical emission models with observations. We present ARCMANCER, a publicly available general ray-tracing and tensor algebra library, written in C++ and providing a Python interface. ARCMANCER supports Riemannian and semi-Riemannian spaces of any dimension and metric, and has novel features such as support for multiple simultaneous coordinate charts, embedded geometric shapes, local coordinate systems, and automatic parallel propagation. The ARCMANCER interface is extensively documented and user friendly. While these capabilities make the library well suited for a large variety of problems in numerical geometry, the main focus of this paper is in general relativistic polarized radiative transfer. The accuracy of the code is demonstrated in several code tests and in a comparison with GRTRANS, an existing ray-tracing code. We then use the library in several scenarios as a way to showcase the wide applicability of the code. We study a thin variable-geometry accretion disk model and find that polarization carries information of the inner disk opening angle. Next, we study rotating neutron stars and determine that to obtain polarized light curves at better than a similar to 1% level of accuracy, the rotation needs to be taken into account both in the spacetime metric and in the shape of the star. Finally, we investigate the observational signatures of an accreting black hole lensed by an orbiting black hole. We find that these systems exhibit a characteristic asymmetric twin-peak profile both in flux and polarization properties.
  • Shevchenko, Vasiliy; Belskaya, Irina N.; Slyusarev, Ivan G.; Mikhalchenko, Olga I.; Krugly, Y. N; Chiorny, V.G.; Lupishko, D.F.; Oszkiewicz, Dagmara; Kwiatkowski, T.; Gritsevich, M.; Muinonen, Karri; Penttilä, Antti (2022)
    We present a database of the absolute magnitudes of asteroids named the Kharkiv Asteroid Absolute Magnitude Database (KhAAMD). The database includes a homogeneous set of the absolute magnitudes for about 400 asteroids in the new HG(1)G(2) magnitude system. We performed a comparative analysis of the asteroid absolute magnitudes between the Kharkiv database and other main magnitude databases (MPC, Pan-STARRS, ATLAS, PTF, and Gaia). We show that the Pan-STARRS absolute magnitude dataset has no systematic deviations and is the most suitable for the determination of diameters and albedos of asteroids. For the MPC dataset, there is a linear trend of overestimating the absolute magnitudes of bright objects and underestimating the magnitudes of faint asteroids. The ATLAS dataset has both a systematic overestimation of asteroid magnitudes and a linear trend. We propose equations that can be used to correct for systematic errors in the MPC and the ATLAS magnitude datasets. There are possible systematic deviations of about 0.1 mag for the Gaia and PTF databases but there are insufficient data overlapping with our data for a definitive analysis.
  • Nättilä, J.; Pihajoki, P. (2018)
    A theoretical framework for emission originating from rapidly rotating oblate compact objects is described in detail. Using a Hamilton-Jacobi formalism, we show that special relativistic rotational effects such as aberration of angles, Doppler boosting, and time dilatation naturally emerge from the general relativistic treatment of rotating compact objects. We use the Butterworth-Ipser metric expanded up to the second order in rotation and hence include effects of light bending, frame-dragging, and quadrupole deviations on our geodesic calculations. We also give detailed descriptions of the numerical algorithms used and provide an open-source implementation of the numerical framework called BENDER. As an application, we study spectral line profiles (i.e., smearing kernels) from rapidly rotating oblate neutron stars. We find that in this metric description, the second-order quadrupole effects are not strong enough to produce narrow observable features in the spectral energy distribution for almost any physically realistic parameter combination, and hence, actually detecting them is unlikely. The full width at tenth-maximum and full width at half-maximum of the rotation smearing kernels are also reported for all viewing angles. These can then be used to quantitatively estimate the effects of rotational smearing on the observed spectra. We also calculate accurate pulse profiles and observer skymaps of emission from hot spots on rapidly rotating accreting millisecond pulsars. These allow us to quantify the strength of the pulse fractions one expects to observe from typical fast-spinning millisecond pulsars.
  • Amati, L.; O’Brien, P.; Götz, D.; Bozzo, E.; Tenzer, C.; Frontera, F.; Ghirlanda, G.; Labanti, C.; Osborne, J.P.; Stratta, G.; Tanvir, N.; Willingale, R.; Attina, P.; Campana, R.; Castro-Tirado, A.J.; Contini, C.; Fuschino, F.; Gomboc, A.; Hudec, R.; Orleanski, P.; Renotte, E.; Rodic, T.; Bagoly, Z.; Blain, A.; Callanan, P.; Covino, S.; Ferrara, A.; Le Floch, E.; Marisaldi, M.; Mereghetti, S.; Rosati, P.; Vacchi, A.; D’Avanzo, P.; Giommi, P.; Piranomonte, S.; Piro, L.; Reglero, V.; Rossi, A.; Santangelo, A.; Salvaterra, R.; Tagliaferri, G.; Vergani, S.; Vinciguerra, S.; Briggs, M.; Campolongo, E.; Ciolfi, R.; Connaughton, V.; Cordier, B.; Morelli, B.; Korpela, S. (2018)
    Abstract THESEUS is a space mission concept aimed at exploiting Gamma-Ray Bursts for investigating the early Universe and at providing a substantial advancement of multi-messenger and time-domain astrophysics. These goals will be achieved through a unique combination of instruments allowing GRB and X-ray transient detection over a broad field of view (more than 1sr) with 0.5-1 arcmin localization, an energy band extending from several MeV down to 0.3 keV and high sensitivity to transient sources in the soft X-ray domain, as well as on-board prompt (few minutes) follow-up with a 0.7 m class IR telescope with both imaging and spectroscopic capabilities. THESEUS will be perfectly suited for addressing the main open issues in cosmology such as, e.g., star formation rate and metallicity evolution of the inter-stellar and intra-galactic medium up to redshift ∼ 10, signatures of Pop III stars, sources and physics of re-ionization, and the faint end of the galaxy luminosity function. In addition, it will provide unprecedented capability to monitor the X-ray variable sky, thus detecting, localizing, and identifying the electromagnetic counterparts to sources of gravitational radiation, which may be routinely detected in the late ’20s / early ’30s by next generation facilities like aLIGO/ aVirgo, eLISA, KAGRA, and Einstein Telescope. THESEUS will also provide powerful synergies with the next generation of multi-wavelength observatories (e.g., LSST, ELT, SKA, CTA, ATHENA).