Browsing by Subject "LIGHT-ABSORPTION"

Sort by: Order: Results:

Now showing items 1-15 of 15
  • Froehlich, R.; Crenn, V.; Setyan, A.; Belis, C. A.; Canonaco, F.; Favez, O.; Riffault, V.; Slowik, J. G.; Aas, W.; Aijala, M.; Alastuey, A.; Artinano, B.; Bonnaire, N.; Bozzetti, C.; Bressi, M.; Carbone, C.; Coz, E.; Croteau, P. L.; Cubison, M. J.; Esser-Gietl, J. K.; Green, D. C.; Gros, V.; Heikkinen, L.; Herrmann, H.; Jayne, J. T.; Lunder, C. R.; Minguillon, M. C.; Mocnik, G.; O'Dowd, C. D.; Ovadnevaite, J.; Petralia, E.; Poulain, L.; Priestman, M.; Ripoll, A.; Sarda-Esteve, R.; Wiedensohler, A.; Baltensperger, U.; Sciare, J.; Prevot, A. S. H. (2015)
    Chemically resolved atmospheric aerosol data sets from the largest intercomparison of the Aerodyne aerosol chemical speciation monitors (ACSMs) performed to date were collected at the French atmospheric supersite SIRTA. In total 13 quadrupole ACSMs (Q-ACSM) from the European ACTRIS ACSM network, one time-of-flight ACSM (ToF-ACSM), and one high-resolution ToF aerosol mass spectrometer (AMS) were operated in parallel for about 3 weeks in November and December similar to 2013. Part 1 of this study reports on the accuracy and precision of the instruments for all the measured species. In this work we report on the intercomparison of organic components and the results from factor analysis source apportionment by positive matrix factorisation (PMF) utilising the multilinear engine 2 (ME-2). Except for the organic contribution of mass-to-charge ratio m/z 44 to the total organics (f(44)), which varied by factors between 0.6 and 1.3 compared to the mean, the peaks in the organic mass spectra were similar among instruments. The m/z 44 differences in the spectra resulted in a variable f(44) in the source profiles extracted by ME-2, but had only a minor influence on the extracted mass contributions of the sources. The presented source apportionment yielded four factors for all 15 instruments: hydrocarbon-like organic aerosol (HOA), cooking-related organic aerosol (COA), biomass burning-related organic aerosol (BBOA) and secondary oxygenated organic aerosol (OOA). ME-2 boundary conditions (profile constraints) were optimised individually by means of correlation to external data in order to achieve equivalent / comparable solutions for all ACSM instruments and the results are discussed together with the investigation of the influence of alternative anchors (reference profiles). A comparison of the ME-2 source apportionment output of all 15 instruments resulted in relative standard deviations (SD) from the mean between 13.7 and 22.7 % of the source's average mass contribution depending on the factors (HOA: 14.3 +/- 2.2 %, COA: 15.0 +/- 3.4 %, OOA: 41.5 +/- 5.7 %, BBOA: 29.3 +/- 5.0 %). Factors which tend to be subject to minor factor mixing (in this case COA) have higher relative uncertainties than factors which are recognised more readily like the OOA. Averaged over all factors and instruments the relative first SD from the mean of a source extracted with ME-2 was 17.2 %.
  • Gliss, Jonas; Mortier, Augustin; Schulz, Michael; Andrews, Elisabeth; Balkanski, Yves; Bauer, Susanne E.; Benedictow, Anna M. K.; Bian, Huisheng; Checa-Garcia, Ramiro; Chin, Mian; Ginoux, Paul; Griesfeller, Jan J.; Heckel, Andreas; Kipling, Zak; Kirkevag, Alf; Kokkola, Harri; Laj, Paolo; Le Sager, Philippe; Lund, Marianne Tronstad; Myhre, Cathrine Lund; Matsui, Hitoshi; Myhre, Gunnar; Neubauer, David; van Noije, Twan; North, Peter; Olivi, Dirk J. L.; Remy, Samuel; Sogacheva, Larisa; Takemura, Toshihiko; Tsigaridis, Kostas; Tsyro, Svetlana G. (2021)
    Within the framework of the AeroCom (Aerosol Comparisons between Observations and Models) initiative, the state-of-the-art modelling of aerosol optical properties is assessed from 14 global models participating in the phase III control experiment (AP3). The models are similar to CMIP6/AerChemMIP Earth System Models (ESMs) and provide a robust multi-model ensemble. Inter-model spread of aerosol species lifetimes and emissions appears to be similar to that of mass extinction coefficients (MECs), suggesting that aerosol optical depth (AOD) uncertainties are associated with a broad spectrum of parameterised aerosol processes. Total AOD is approximately the same as in AeroCom phase I (AP1) simulations. However, we find a 50% decrease in the optical depth (OD) of black carbon (BC), attributable to a combination of decreased emissions and lifetimes. Relative contributions from sea salt (SS) and dust (DU) have shifted from being approximately equal in AP1 to SS contributing about 2/3 of the natural AOD in AP3. This shift is linked with a decrease in DU mass burden, a lower DU MEC, and a slight decrease in DU lifetime, suggesting coarser DU particle sizes in AP3 compared to AP1. Relative to observations, the AP3 ensemble median and most of the participating models underestimate all aerosol optical properties investigated, that is, total AOD as well as fine and coarse AOD (AOD(f), AOD(c)), Angstrom exponent (AE), dry surface scattering (SCdry), and absorption (AC(dry)) coefficients. Compared to AERONET, the models underestimate total AOD by ca. 21% +/- 20% (as inferred from the ensemble median and interquartile range). Against satellite data, the ensemble AOD biases range from -37% (MODIS-Terra) to -16% (MERGED-FMI, a multi-satellite AOD product), which we explain by differences between individual satellites and AERONET measurements themselves. Correlation coefficients (R) between model and observation AOD records are generally high (R > 0.75), suggesting that the models are capable of capturing spatiotemporal variations in AOD. We find a much larger underestimate in coarse AOD(c) (similar to-45% +/- 25 %) than in fine AOD(f) (similar to-15% +/- 25 %) with slightly increased inter-model spread compared to total AOD. These results indicate problems in the modelling of DU and SS. The AOD(c) bias is likely due to missing DU over continental land masses (particularly over the United States, SE Asia, and S. America), while marine AERONET sites and the AATSR SU satellite data suggest more moderate oceanic biases in AOD(c). Column AEs are underestimated by about 10% +/- 16 %. For situations in which measurements show AE > 2, models underestimate AERONET AE by ca. 35 %. In contrast, all models (but one) exhibit large overestimates in AE when coarse aerosol dominates (bias ca. +140% if observed AE < 0.5). Simulated AE does not span the observed AE variability. These results indicate that models overestimate particle size (or underestimate the fine-mode fraction) for fine-dominated aerosol and underestimate size (or overestimate the fine-mode fraction) for coarse-dominated aerosol. This must have implications for lifetime, water uptake, scattering enhancement, and the aerosol radiative effect, which we can not quantify at this moment. Comparison against Global Atmosphere Watch (GAW) in situ data results in mean bias and inter-model variations of -35% +/- 25% and -20% +/- 18% for SCdry and AC(dry), respectively. The larger underestimate of SCdry than AC(dry) suggests the models will simulate an aerosol single scattering albedo that is too low. The larger underestimate of SCdry than ambient air AOD is consistent with recent findings that models overestimate scattering enhancement due to hygroscopic growth. The broadly consistent negative bias in AOD and surface scattering suggests an underestimate of aerosol radiative effects in current global aerosol models. Considerable inter-model diversity in the simulated optical properties is often found in regions that are, unfortunately, not or only sparsely covered by ground-based observations. This includes, for instance, the Sahara, Amazonia, central Australia, and the South Pacific. This highlights the need for a better site coverage in the observations, which would enable us to better assess the models, but also the performance of satellite products in these regions. Using fine-mode AOD as a proxy for present-day aerosol forcing estimates, our results suggest that models underestimate aerosol forcing by ca. -15 %, however, with a considerably large interquartile range, suggesting a spread between -35% and +10 %.
  • Flamant, Cyrille; Deroubaix, Adrien; Chazette, Patrick; Brito, Joel; Gaetani, Marco; Knippertz, Peter; Fink, Andreas H.; de Coetlogon, Gaelle; Menut, Laurent; Colomb, Aurelie; Denjean, Cyrielle; Meynadier, Remi; Rosenberg, Philip; Dupuy, Regis; Dominutti, Pamela; Duplissy, Jonathan; Bourrianne, Thierry; Schwarzenboeck, Alfons; Ramonet, Michel; Totems, Julien (2018)
    The complex vertical distribution of aerosols over coastal southernWest Africa (SWA) is investigated using airborne observations and numerical simulations. Observations were gathered on 2 July 2016 offshore of Ghana and Togo, during the field phase of the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa project. This was the only flight conducted over the ocean during which a downward-looking lidar was operational. The aerosol loading in the lower troposphere includes emissions from coastal cities (Accra, Lome, Cotonou, and Lagos) as well as biomass burning aerosol and dust associated with long-range transport from central Africa and the Sahara, respectively. Our results indicate that the aerosol distribution on this day is impacted by subsidence associated with zonal and meridional regional-scale overturning circulations associated with the land-sea surface temperature contrast and orography over Ghana and Togo, as typically observed on hot, cloud-free summer days such as 2 July 2016. Furthermore, we show that the zonal circulation evidenced on 2 July is a persistent feature over the Gulf of Guinea during July 2016. Numerical tracer re-lease experiments highlight the dominance of aged emissions from Accra on the observed pollution plume loadings over the ocean, in the area of aircraft operation. The contribution of aged emission from Lome and Cotonou is also evident above the marine boundary layer. Given the general direction of the monsoon flow, the tracer experiments indicate no contribution from Lagos emissions to the atmospheric composition of the area west of Cotonou, where our airborne observations were gathered. The tracer plume does not extend very far south over the ocean (i.e. less than 100 km from Accra), mostly because emissions are transported northeastward near the surface over land and westward above the marine atmospheric boundary layer. The latter is possible due to interactions between the monsoon flow, complex terrain, and land-sea breeze systems, which support the vertical mixing of the urban pollution. This work sheds light on the complex - and to date undocumented - mechanisms by which coastal shallow circulations can distribute atmospheric pollutants over the densely populated SWA region.
  • Lihavainen, H.; Alghamdi, M. A.; Hyvärinen, A.; Hussein, T.; Neitola, Kimmo; Khoder, M.; Abdelmaksoud, A. S.; Al-Jeelani, H.; Shabbaj, I. I.; Almehmadi, F. M. (2017)
    To derive the comprehensive aerosol in situ characteristics at a rural background area in Saudi Arabia, an aerosol measurements station was established to Hada Al Sham, 60 km east from the Red Sea and the city of Jeddah. The present sturdy describes the observational data from February 2013 to February 2015 of scattering and absorption coefficients, Angstrom exponents and single scattering albedo over the measurement period. The average scattering and absorption coefficients at wavelength 525 nm were 109 +/- 71 Min(-1) (mean +/- SD, at STP conditions) and 15 +/- 17 Mm(-1) (at STP conditions), respectively. As expected, the scattering coefficient was dominated by large desert dust particles with low Angstrom scattering exponent, 0.49 +/- 0.62. Especially from February to June the Angstrom scattering exponent was clearly lower (0.23) and scattering coefficients higher (124 Mm(-1)) than total averages because of the dust outbreak season. Aerosol optical properties had clear diurnal cycle. The lowest scattering and absorption coefficients and aerosol optical depths were observed around noon. The observed diurnal variation is caused by wind direction and speed, during night time very calm easterly winds are dominating whereas during daytime the stronger westerly winds are dominating (sea breeze). Positive Matrix Factorization mathematical tool was applied to the scattering and absorption coefficients and PM2.5 and coarse mode (PM10-PM2.5) mass concentrations to identify source characteristics. Three different factors with clearly different properties were found; anthropogenic, BC source and desert dust. Mass absorption efficiencies for BC source and desert dust factors were, 6.0 m(2) g(-1) and 0.4 m(2) g(-1), respectively, and mass scattering efficiencies for anthropogenic (sulphate) and desert dust, 2.5 m(2) g(-1) and 0.8 m(2) g(-1), respectively.
  • Nielsen, Ingeborg E.; Skov, Henrik; Massling, Andreas; Eriksson, Axel C.; Dall'Osto, Manuel; Junninen, Heikki; Sarnela, Nina; Lange, Robert; Collier, Sonya; Zhang, Qi; Cappa, Christopher D.; Nøjgaard, Jacob K. (2019)
    There are limited measurements of the chemical composition, abundance and sources of atmospheric particles in the High Arctic To address this, we report 93 d of soot particle aerosol mass spectrometer (SP-AMS) data collected from 20 February to 23 May 2015 at Villum Research Station (VRS) in northern Greenland (81 degrees 36' N). During this period, we observed the Arctic haze phenomenon with elevated PM1 concentrations ranging from an average of 2.3, 2.3 and 3.3 mu g m(-3) in February, March and April, respectively, to 1.2 mu g m(-3) in May. Particulate sulfate (SO42-) accounted for 66 % of the non-refractory PM1 with the highest concentration until the end of April and decreasing in May. The second most abundant species was organic aerosol (OA) (24 %). Both OA and PM1, estimated from the sum of all collected species, showed a marked decrease throughout May in accordance with the polar front moving north, together with changes in aerosol removal processes. The highest refractory black carbon (rBC) concentrations were found in the first month of the campaign, averaging 0.2 mu g m(-3). In March and April, rBC averaged 0.1 mu g m(-3) while decreasing to 0.02 mu g m(-3) in May. Positive matrix factorization (PMF) of the OA mass spectra yielded three factors: (1) a hydrocarbon-like organic aerosol (HOA) factor, which was dominated by primary aerosols and accounted for 12 % of OA mass, (2) an Arctic haze organic aerosol (AOA) factor and (3) a more oxygenated marine organic aerosol (MOA) factor. AOA dominated until mid-April (64 %-81 % of OA), while being nearly absent from the end of May and correlated significantly with SO42-, suggesting the main part of that factor is secondary OA. The MOA emerged late at the end of March, where it increased with solar radiation and reduced sea ice extent and dominated OA for the rest of the campaign until the end of May (24 %-74 % of OA), while AOA was nearly absent. The highest O/C ratio (0.95) and S/C ratio (0.011) was found for MOA. Our data support the current understanding that Arctic aerosols are highly influenced by secondary aerosol formation and receives an important contribution from marine emissions during Arctic spring in remote High Arctic areas. In view of a changing Arctic climate with changing sea-ice extent, biogenic processes and corresponding source strengths, highly time-resolved data are needed in order to elucidate the components dominating aerosol concentrations and enhance the understanding of the processes taking place.
  • Chauvigné, Aurélien; Aliaga, Diego; Sellegri, Karine; Montoux, Nadège; Krejci, Radovan; Močnik, Griša; Moreno, Isabel; Müller, Thomas; Pandolfi, Marco; Velarde, Fernando; Weinhold, Kay; Ginot, Patrick; Wiedensohler, Alfred; Andrade, Marcos; Laj, Paolo (2019)
    This study documents and analyses a 4-year continuous record of aerosol optical properties measured at the Global Atmosphere Watch (GAW) station of Chacaltaya (CHC; 5240 m a.s.l.), in Bolivia. Records of particle light scattering and particle light absorption coefficients are used to investigate how the high Andean Cordillera is affected by both long-range transport and by the fast-growing agglomeration of La Paz-El Alto, located approximately 20 km away and 1.5 km below the sampling site. The extended multiyear record allows us to study the properties of aerosol particles for different air mass types, during wet and dry seasons, also covering periods when the site was affected by biomass burning in the Bolivian lowlands and the Amazon Basin. The absorption, scattering, and extinction coefficients (median annual values of 0.74, 12.14, and 12.96 Mm(-1) respectively) show a clear seasonal variation with low values during the wet season (0.57, 7.94, and 8.68 Mm(-1) respectively) and higher values during the dry season (0.80, 11.23, and 14.51 Mm(-1) respectively). The record is driven by variability at both seasonal and diurnal scales. At a diurnal scale, all records of intensive and extensive aerosol properties show a pronounced variation (daytime maximum, night-time minimum), as a result of the dynamic and convective effects. The particle light absorption, scattering, and extinction coefficients are on average 1.94, 1.49, and 1.55 times higher respectively in the turbulent thermally driven conditions than the more stable conditions, due to more efficient transport from the boundary layer. Retrieved intensive optical properties are significantly different from one season to the other, reflecting the changing aerosol emission sources of aerosol at a larger scale. Using the wavelength dependence of aerosol particle optical properties, we discriminated between contributions from natural (mainly mineral dust) and anthropogenic (mainly biomass burning and urban transport or industries) emissions according to seasons and local circulation. The main sources influencing measurements at CHC are from the urban area of La Paz-El Alto in the Altiplano and from regional biomass burning in the Amazon Basin. Results show a 28 % to 80 % increase in the extinction coefficients during the biomass burning season with respect to the dry season, which is observed in both tropospheric dynamic conditions. From this analysis, long-term observations at CHC provide the first direct evidence of the impact of biomass burning emissions of the Amazon Basin and urban emissions from the La Paz area on atmospheric optical properties at a remote site all the way to the free troposphere.
  • Zieger, P.; Weingartner, E.; Henzing, J.; Moerman, M.; de Leeuw, G.; Mikkilä, Jyri; Ehn, Mikael; Petäjä, Tuukka; Clemer, K.; van Roozendael, M.; Yilmaz, S.; Friess, U.; Irie, H.; Wagner, T.; Shaiganfar, R.; Beirle, S.; Apituley, A.; Wilson, K.; Baltensperger, U. (2011)
  • Wang, Jiaping; Virkkula, Aki; Gao, Yuan; Lee, Shuncheng; Shen, Yicheng; Chi, Xuguang; Nie, Wei; Liu, Qiang; Xu, Zheng; Huang, Xin; Wang, Tao; Cui, Long; Ding, Aijun (2017)
    Temporal variations in aerosol optical properties were investigated at a coastal station in Hong Kong based on the field observation from February 2012 to February 2015. At 550 nm, the average light-scattering (151 +/- 100Mm(-1) / and absorption coefficients (8.3 +/- 6.1Mm(-1) / were lower than most of other rural sites in eastern China, while the single-scattering albedo (SSA = 0.93 +/- 0.05) was relatively higher compared with other rural sites in the Pearl River Delta (PRD) region. Correlation analysis confirmed that the darkest aerosols were smaller in particle size and showed strong scattering wavelength dependencies, indicating possible sources from fresh emissions close to the measurement site. Particles with D-p of 200-800 nm were less in number, yet contributed the most to the light-scattering coefficients among submicron particles. In summer, both Delta BC / Delta CO and SO2 / BC peaked, indicating the impact of nearby combustion sources on this site. Multi-year backward Lagrangian particle dispersion modeling (LPDM) and potential source contribution (PSC) analysis revealed that these particles were mainly from the air masses that moved southward over Shenzhen and urban Hong Kong and the polluted marine air containing ship exhausts. These fresh emission sources led to low SSA during summer months. For winter and autumn months, contrarily, Delta BC / Delta CO and SO2 / BC were relatively low, showing that the site was more under influence of well-mixed air masses from long-range transport including from South China, East China coastal regions, and aged aerosol transported over the Pacific Ocean and Taiwan, causing stronger abilities of light extinction and larger variability of aerosol optical properties. Our results showed that ship emissions in the vicinity of Hong Kong could have visible impact on the light-scattering and absorption abilities as well as SSA at Hok Tsui.
  • Svensson, J.; Strom, J.; Hansson, M.; Lihavainen, H.; Kerminen, V-M (2013)
  • Virkkula, A.; Chi, X.; Ding, A.; Shen, Y.; Nie, W.; Qi, X.; Zheng, L.; Huang, X.; Xie, Y.; Wang, J.; Petäjä, T.; Kulmala, Markku (2015)
    Aerosol optical properties were measured with a seven-wavelength aethalometer and a three-wavelength nephelometer at the suburban site SORPES in Nanjing, China, in September 2013-January 2015. The aethalometer compensation parameter k, calculated with the Virkkula et al. (2007) method depended on the backscatter fraction, measured with an independent method, the integrating nephelometer. At lambda = 660 nm the daily averaged compensation parameter k approximate to 0.0017 +/- 0.0002 and 0.0042 +/- 0.0013 when backscatter fraction at lambda = 635 nm was in the ranges of 0.100 +/- 0.005 and 0.160 +/- 0.005, respectively. Also, the wavelength dependency of the compensation parameter depended on the backscatter fraction: when b(lambda = 525 nm) was less than approximately 0.13 the compensation parameter decreased with wavelength and at larger b it increased with wavelength. This dependency has not been considered in any of the algorithms that are currently used for processing aethalometer data. The compensation parameter also depended on the single-scattering albedo omega(0) so that k decreased with increasing omega(0). For the green light (lambda = 520 nm) in the omega(0) range 0.870 +/- 0.005, the average (+/- standard deviation) k approximate to 0.0047 +/- 0.006 and in the omega(0) range 0.960 +/- 0.005, k approximate to 0.0028 +/- 0.0007. This difference was larger for the near-infrared light (lambda = 880 nm): in the omega(0) range 0.860 +/- 0.005, k approximate to 0.0055 +/- 0.0023 and in the omega(0) range 0.960 +/- 0.005, k approximate to 0.0019 +/- 0.0011. The negative dependence of k on omega(0) was also shown with a simple theoretical analysis.
  • Aarnos, Hanna; Gelinas, Yves; Kasurinen, Ville; Gu, Yufei; Puupponen, Veli-Mikko; Vähätalo, Anssi V. (2018)
    When terrigenous dissolved organic carbon (tDOC) rich in chromophoric dissolved organic matter (tCDOM) enters the ocean, solar radiation mineralizes it partially into dissolved inorganic carbon (DIC). This study addresses the amount and the rates of DIC photoproduction from tDOC and the area of ocean required to photomineralize tDOC. We collected water samples from 10 major rivers, mixed them with artificial seawater, and irradiated them with simulated solar radiation to measure DIC photoproduction and the photobleaching of tCDOM. The linear relationship between DIC photoproduction and tCDOM photobleaching was used to estimate the amount of photoproduced DIC from the tCDOM fluxes of the study rivers. Solar radiation was estimated to mineralize 12.5 +/- 3.7 Tg C yr(-1) (10 rivers)(-1) or 18 +/- 8% of tDOC flux. The irradiation experiments also approximated typical apparent spectral quantum yields for DIC photoproduction (phi(lambda)) over the entire lifetime of the tCDOM. Based on phi(lambda)s and the local solar irradiances in river plumes, the annual areal DIC photoproduction rates from tDOC were calculated to range from 52 +/- 4 (Lena River) to 157 +/- 2 mmol C m(-2) yr(-1) (Mississippi River). When the amount of photoproduced DIC was divided by the areal rate, 9.6 +/- 2.5 x 10(6) km(2) of ocean was required for the photomineralization of tDOC from the study rivers. Extrapolation to the global tDOC flux yields 45 (31-58) Tg of photoproduced DIC per year in the river plumes that cover 34 (25-43) x 10(6) km(2) of the ocean.
  • Moschos, Vaios; Kumar, Nivedita K.; Dällenbach, Kaspar; Baltensperger, Urs; Prevot, Andre S. H.; El Haddad, Imad (2018)
    The impact of brown carbon (BrC) on climate has been widely acknowledged but remains uncertain, because either its contribution to absorption is being ignored in most climate models or the associated mixed emission sources and atmospheric lifetime are not accounted for. In this work, we propose positive matrix factorization as a framework to apportion the contributions of individual primary and secondary organic aerosol (OA) source components of BrC absorption, by combining long-term aerosol mass spectrometry (AMS) data with concurrent ultraviolet-visible (UV-vis) spectroscopy measurements. The former feature time-depend ent factor contributions to OA mass, and the latter consist of wavelength-dependent absorption coefficients. Using this approach for a full-year case study, we estimate for the first time the mass absorption efficiency (MAE) of major light-absorbing water soluble OA components in the atmosphere. We show that secondary biogenic OA contributes negligibly to absorption despite dominating the mass concentration in the summer. In contrast, primary and secondary wood burning emissions are highly absorbing up to 500 nm. The approach allowed us to constrain their MAE within a confined range consistent with previous laboratory work, which can be used in climate models to estimate the impact of BrC from these emissions on the overall absorption.
  • Lim, Saehee; Lee, Meehye; Kim, Sang-Woo; Laj, Paolo (2018)
    Black carbon (BC) and brown carbon (BrC) aerosols that are released from the combustion of fossil fuels and biomass are of great concern because of their light-absorbing ability and great abundance associated with various anthropogenic sources, particularly in East Asia. However, the optical properties of ambient aerosols are dependent on the mixing state and the chemical composition of absorbing and non-absorbing aerosols. Here we examined how, in East Asian outflows, the parameters of the aerosol optical properties can be altered seasonally in conjunction with the mixing state and the chemical composition of aerosols, using 3-year aerosol measurements. Our findings highlight the important role played by sulfate in East Asia during the warm season in both enhancing single scattering albedo (SSA) and altering the absorption properties of aerosols-enhancing mass absorption cross section of BC (MAC(BC)) and reducing MAC of BrC (MAC(BrC),(370)). Therefore we suggest that in global radiative forcing models, particular attention should be paid to the consideration of the accurate treatment of the SO2 emission changes in the coming years in this region that will result from China's air quality policy.
  • Grupe, Merten; Boden, Pit; Di Martino-Fumo, Patrick; Gui, Xin; Bruschi, Cecilia; Israil, Roumany; Schmitt, Marcel; Nieger, Martin; Gerhards, Markus; Klopper, Wim; Riehn, Christoph; Bizzarri, Claudia; Diller, Rolf (2021)
    Chemical and spectroscopic characterization of the mononuclear photosensitizers [(DPEPhos)Cu(I)(MPyrT)](0/+) (CuL, CuLH) and their dinuclear analogues (Cu2L', Cu2L'H-2), backed by (TD)DFT and high-level GW-Bethe-Salpeter equation calculations, exemplifies the complex influence of charge, nuclearity and structural flexibility on UV-induced photophysical pathways. Ultrafast transient absorption and step-scan FTIR spectroscopy reveal flattening distortion in the triplet state of CuLH as controlled by charge, which also appears to have a large impact on the symmetry of the long-lived triplet states in Cu2L' and Cu2L'H-2. Time-resolved luminescence spectroscopy (solid state), supported by transient photodissociation spectroscopy (gas phase), confirm a lifetime of some tens of mu s for the respective triplet states, as well as the energetics of thermally activated delayed luminescence, both being essential parameters for application of these materials based on earth-abundant copper in photocatalysis and luminescent devices.
  • Helin, A.; Virkkula, A.; Backman, J.; Pirjola, L.; Sippula, O.; Aakko-Saksa, P.; Väätäinen, S.; Mylläri, F.; Järvinen, A.; Bloss, M.; Aurela, M.; Jakobi, G.; Karjalainen, P.; Zimmermann, R.; Jokiniemi, J.; Saarikoski, S.; Tissari, J.; Rönkkö, T.; Niemi, J.; Timonen, H. (2021)
    The absorption Angstrom exponent (AAE) describes the spectral dependence of light absorption by aerosols. AAE is typically used to differentiate between different aerosol types for example., black carbon, brown carbon, and dust particles. In this study, the variation of AAE was investigated mainly in fresh aerosol emissions from different fuel and combustion types, including emissions from ships, buses, coal-fired power plants, and residential wood burning. The results were assembled to provide a compendium of AAE values from different emission sources. A dual-spot aethalometer (AE33) was used in all measurements to obtain the light absorption coefficients at seven wavelengths (370-950 nm). AAE(470/950) varied greatly between the different emission sources, ranging from -0.2 +/- 0.7 to 3.0 +/- 0.8. The correlation between the AAE(470/950) and AAE(370-950) results was good (R-2 = 0.95) and the mean bias error between these was 0.02. In the ship engine exhaust emissions, the highest AAE(470/950) values (up to 2.0 +/- 0.1) were observed when high sulfur content heavy fuel oil was used, whereas low sulfur content fuels had the lowest AAE(470/950) (0.9-1.1). In the diesel bus exhaust emissions, AAE(470/950) increased in the order of acceleration (0.8 +/- 0.1), deceleration (1.1 +/- 0.1), and steady driving (1.2 +/- 0.1). In the coal-fired power plant emissions, the variation of AAE(470/950) was substantial (from -0.1 +/- 2.1 to 0.9 +/- 1.6) due to the differences in the fuels and flue gas cleaning conditions. Fresh wood-burning derived aerosols had AAE(470/950) from 1.1 +/- 0.1 (modern masonry heater) to 1.4 +/- 0.1 (pellet boiler), lower than typically associated with wood burning, while the burn cycle phase affected AAE variation.