Browsing by Subject "LIRAGLUTIDE"

Sort by: Order: Results:

Now showing items 1-5 of 5
  • Martikainen, Janne; Lehtimaki, Aku-Ville; Jalkanen, Kari; Lavikainen, Piia; Paajanen, Teemu; Marjonen, Heidi; Kristiansson, Kati; Lindström, Jaana; Perola, Markus (2022)
    Type 2 diabetes (T2D) with increasing prevalence is a significant global public health challenge. Obesity, unhealthy diet, and low physical activity are one of the major determinants of the rise in T2D prevalence. In addition, family history and genetic risk of diabetes also play a role in the process of developing T2D. Therefore, solutions for the early identification of individuals at high risk for T2D for early targeted detection of T2D, prevention, and intervention are highly preferred. Recently, novel genomic-based polygenic risk scores (PRSs) have been suggested to improve the accuracy of risk prediction supporting the targeting of preventive interventions to those at highest risk for T2D. Therefore, the aim of the present study was to assess the cost-utility of an additional PRS testing information (as a part of overall risk assessment) followed by a lifestyle intervention and an additional medical therapy when estimated 10-year overall risk for T2D exceeded 20% among Finnish individuals screened as at the high-risk category (i.e., 10%-20% 10-year overall risk of T2D) based on traditional risk factors only. For a cost-utility analysis, an individual-level state-transition model with probabilistic sensitivity analysis was constructed. A 1-year cycle length and a lifetime time horizon were applied in the base-case. A 3% discount rate was used for costs and QALYs. Cost-effectiveness acceptability curve (CEAC) and estimates for the expected value of perfect information (EVPI) were calculated to assist decision makers. The use of the targeted PRS strategy reclassified 12.4 percentage points of individuals to be very high-risk individuals who would have been originally classified as high risk using the usual strategy only. Over a lifetime horizon, the targeted PRS was a dominant strategy (i.e., less costly, more effective). One-way and scenario sensitivity analyses showed that results remained dominant in almost all simulations. However, there is uncertainty, since the probability (EVPI) of cost-effectiveness at a WTP of 0(sic)/QALY was 63.0% (243(sic)) indicating the probability that the PRS strategy is a dominant option. In conclusion, the results demonstrated that the PRS provides moderate additional value in Finnish population in risk screening leading to potential cost savings and better quality of life when compared with the current screening methods for T2D risk.
  • Muskiet, M. H. A.; Bunck, M. C.; Heine, R. J.; Corner, A.; Yki-Järvinen, H.; Eliasson, B.; Joles, J. A.; Diamant, M.; Tonneijck, L.; van Raalte, D. H. (2019)
    Aims: To compare the effects of long-term treatment with the GLP-1RA exenatide twicedaily versus titrated insulin glargine (iGlar) on renal function and albuminuria in type 2 diabetes (T2DM) patients. Methods: We post-hoc evaluated renal outcome-data of 54 overweight T2DM patients (mean +/- SD age 60 +/- 8 years, HbA1c 7.5 +/- 0.9%, eGFR 86 +/- 16 mL/min/1.73m(2), median [IQR] urinary albumin-to-creatinine-ratio (UACR) 0.75 [0.44-1.29] mg/mmol) randomised to exenatide 10 mg twice-daily or titrated iGlar on-top-of metformin for 52-weeks. Renal efficacy endpoints were change in creatinine clearance (CrCl) and albuminuria (urinary albuminexcretion [UAE] and UACR) based on 24-h urines, collected at baseline and Week-52. eGFR and exploratory endpoints were collected throughout the intervention-period, and after a 4-week wash-out. Results: HbA1c-reductions were similar with exenatide (mean +/- SEM -0.80 +/- 0.10%) and iGlar (-0.79 +/- 0.14%; treatment-difference 0.02%; 95% CI - 0.31 to 0.42%). Change from baseline to Week-52 in CrCl, UAE or UACR did not statistically differ; only iGlar reduced albuminuria (P <0.05; within-group). eGFR decreased from baseline to Week-4 with exenatide (-3.9 +/- 2.1 mL/min/1.73 m(2); P = 0.069) and iGlar (-2.7 +/- 1.2 mL/min/1.73 m(2); P = 0.034), without treatment-differences in ensuing trajectory. Exenatide versus iGlar reduced bodyweight (-5.4 kg; 2.9-7.9; P <0.001), but did not affect blood pressure, lipids or plasma uric acid. Conclusions: Among T2DM patients without overt nephropathy, one-year treatment with exenatide twice-daily does not affect renal function-decline or onset/progression of albuminuria compared to titrated iGlar. (C) 2019 Elsevier B.V. All rights reserved.
  • Jujić, Amra; Atabaki-Pasdar, Naeimeh; Nilsson, Peter M.; Almgren, Peter; Hakaste, Liisa; Tuomi, Tiinamaija; Berglund, Lisa M.; Franks, Paul W.; Holst, Jens J.; Prasad, Rashmi B.; Torekov, Signe S.; Ravassa, Susana; Díez, Javier; Persson, Margaretha; Melander, Olle; Gomez, Maria F.; Groop, Leif; Ahlqvist, Emma; Magnusson, Martin (2020)
    Aims/hypothesis Evidence that glucose-dependent insulinotropic peptide (GIP) and/or the GIP receptor (GIPR) are involved in cardiovascular biology is emerging. We hypothesised that GIP has untoward effects on cardiovascular biology, in contrast to glucagon-like peptide 1 (GLP-1), and therefore investigated the effects of GIP and GLP-1 concentrations on cardiovascular disease (CVD) and mortality risk. Methods GIP concentrations were successfully measured during OGTTs in two independent populations (Malmo Diet Cancer-Cardiovascular Cohort [MDC-CC] and Prevalence, Prediction and Prevention of Diabetes in Botnia [PPP-Botnia]) in a total of 8044 subjects. GLP-1 (n = 3625) was measured in MDC-CC. The incidence of CVD and mortality was assessed via national/regional registers or questionnaires. Further, a two-sample Mendelian randomisation (2SMR) analysis between the GIP pathway and outcomes (coronary artery disease [CAD] and myocardial infarction) was carried out using a GIP-associated genetic variant, rs1800437, as instrumental variable. An additional reverse 2SMR was performed with CAD as exposure variable and GIP as outcome variable, with the instrumental variables constructed from 114 known genetic risk variants for CAD. Results In meta-analyses, higher fasting levels of GIP were associated with risk of higher total mortality (HR[95% CI] = 1.22 [1.11, 1.35]; p = 4.5 x 10(-5)) and death from CVD (HR[95% CI] 1.30 [1.11, 1.52]; p = 0.001). In accordance, 2SMR analysis revealed that increasing GIP concentrations were associated with CAD and myocardial infarction, and an additional reverse 2SMR revealed no significant effect of CAD on GIP levels, thus confirming a possible effect solely of GIP on CAD. Conclusions/interpretation In two prospective, community-based studies, elevated levels of GIP were associated with greater risk of all-cause and cardiovascular mortality within 5-9 years of follow-up, whereas GLP-1 levels were not associated with excess risk. Further studies are warranted to determine the cardiovascular effects of GIP per se.
  • Nauck, Michael A.; McGuire, Darren K.; Pieper, Karen S.; Lokhnygina, Yuliya; Strandberg, Timo E.; Riefflin, Axel; Delibasi, Tuncay; Peterson, Eric D.; White, Harvey D.; Scott, Russell; Holman, Rury R. (2019)
    Background To examine the effects of the DPP-4i sitagliptin on CV outcomes during and after incident MI in the Trial Evaluating Cardiovascular Outcomes with Sitagliptin (TECOS). Methods TECOS randomized 14,671 participants with type 2 diabetes and atherosclerotic cardiovascular disease (ASCVD) to sitagliptin or placebo, in addition to usual care. For those who had a within-trial MI, we analyzed case fatality, and for those with a nonfatal MI, we examined a composite cardiovascular (CV) outcome (CV death or hospitalization for heart failure [hHF]) by treatment group, using Cox proportional hazards models left-censored at the time of the first within-trial MI, without and with adjustment for potential confounders, in intention-to-treat analyses. Results During TECOS, 616 participants had >= 1 MI (sitagliptin group 300, placebo group 316, HR 0.95, 95% CI 0.81-1.11, P = 0.49), of which 25 were fatal [11 and 14, respectively]). Of the 591 patients with a nonfatal MI, 87 (15%) died subsequently, with 66 (11%) being CV deaths, and 57 (10%) experiencing hHF. The composite outcome occurred in 58 (20.1%; 13.9 per 100 person-years) sitagliptin group participants and 50 (16.6%; 11.7 per 100 person-years) placebo group participants (HR 1.21, 95% CI 0.83-1.77, P = 0.32, adjusted HR 1.23, 95% CI 0.83-1.82, P = 0.31). On-treatment sensitivity analyses also showed no significant between-group differences in post-MI outcomes. Conclusions In patients with type 2 diabetes and ASCVD experiencing an MI, sitagliptin did not reduce subsequent risk of CV death or hHF, contrary to expectations derived from preclinical animal models. Trial registration clinicaltrials.gov no. NCT00790205
  • Wilson, Jonathan M.; Nikooienejad, Amir; Robins, Deborah A.; Roell, William C.; Riesmeyer, Jeffrey S.; Haupt, Axel; Duffin, Kevin L.; Taskinen, Marja-Riitta; Ruotolo, Giacomo (2020)
    Aim To better understand the marked decrease in serum triglycerides observed with tirzepatide in patients with type 2 diabetes, additional lipoprotein-related biomarkers were measured post hoc in available samples from the same study. Materials and Methods Patients were randomized to receive once-weekly subcutaneous tirzepatide (1, 5, 10 or 15 mg), dulaglutide (1.5 mg) or placebo. Serum lipoprotein profile, apolipoprotein (apo) A-I, B and C-III and preheparin lipoprotein lipase (LPL) were measured at baseline and at 4, 12 and 26 weeks. Lipoprotein particle profile by nuclear magnetic resonance was assessed at baseline and 26 weeks. The lipoprotein insulin resistance (LPIR) score was calculated. Results At 26 weeks, tirzepatide dose-dependently decreased apoB and apoC-III levels, and increased serum preheparin LPL compared with placebo. Tirzepatide 10 and 15 mg decreased large triglyceride-rich lipoprotein particles (TRLP), small low-density lipoprotein particles (LDLP) and LPIR score compared with both placebo and dulaglutide. Treatment with dulaglutide also reduced apoB and apoC-III levels but had no effect on either serum LPL or large TRLP, small LDLP and LPIR score. The number of total LDLP was also decreased with tirzepatide 10 and 15 mg compared with placebo. A greater reduction in apoC-III with tirzepatide was observed in patients with high compared with normal baseline triglycerides. At 26 weeks, change in apoC-III, but not body weight, was the best predictor of changes in triglycerides with tirzepatide, explaining up to 22.9% of their variability. Conclusions Tirzepatide treatment dose-dependently decreased levels of apoC-III and apoB and the number of large TRLP and small LDLP, suggesting a net improvement in atherogenic lipoprotein profile.