Browsing by Subject "LISTS"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Scala, Giovanni; Serra, Angela; Marwah, Veer Singh; Saarimaki, Laura Aliisa; Greco, Dario (2019)
    BackgroundFunctional annotation of genes is an essential step in omics data analysis. Multiple databases and methods are currently available to summarize the functions of sets of genes into higher level representations, such as ontologies and molecular pathways. Annotating results from omics experiments into functional categories is essential not only to understand the underlying regulatory dynamics but also to compare multiple experimental conditions at a higher level of abstraction. Several tools are already available to the community to represent and compare functional profiles of omics experiments. However, when the number of experiments and/or enriched functional terms is high, it becomes difficult to interpret the results even when graphically represented. Therefore, there is currently a need for interactive and user-friendly tools to graphically navigate and further summarize annotations in order to facilitate results interpretation also when the dimensionality is high.ResultsWe developed an approach that exploits the intrinsic hierarchical structure of several functional annotations to summarize the results obtained through enrichment analyses to higher levels of interpretation and to map gene related information at each summarized level. We built a user-friendly graphical interface that allows to visualize the functional annotations of one or multiple experiments at once. The tool is implemented as a R-Shiny application called FunMappOne and is available at is a R-shiny graphical tool that takes in input multiple lists of human or mouse genes, optionally along with their related modification magnitudes, computes the enriched annotations from Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, or Reactome databases, and reports interactive maps of functional terms and pathways organized in rational groups. FunMappOne allows a fast and convenient comparison of multiple experiments and an easy way to interpret results.
  • Lin, Chunbin; Lu, Jiaheng; Wei, Zhewei; Wang, Jianguo; Xiao, Xiaokui (2018)
    Traditional top-k algorithms, e.g., TA and NRA, have been successfully applied in many areas such as information retrieval, data mining and databases. They are designed to discover k objects, e.g., top-k restaurants, with highest overall scores aggregated from different attributes, e.g., price and location. However, new emerging applications like query recommendation require providing the best combinations of attributes, instead of objects. The straightforward extension based on the existing top-k algorithms is prohibitively expensive to answer top-k combinations because they need to enumerate all the possible combinations, which is exponential to the number of attributes. In this article, we formalize a novel type of top-k query, called top-k, m, which aims to find top-k combinations of attributes based on the overall scores of the top-m objects within each combination, where m is the number of objects forming a combination. We propose a family of efficient top-k, m algorithms with different data access methods, i.e., sorted accesses and random accesses and different query certainties, i.e., exact query processing and approximate query processing. Theoretically, we prove that our algorithms are instance optimal and analyze the bound of the depth of accesses. We further develop optimizations for efficient query evaluation to reduce the computational and the memory costs and the number of accesses. We provide a case study on the real applications of top-k, m queries for an online biomedical search engine. Finally, we perform comprehensive experiments to demonstrate the scalability and efficiency of top-k, m algorithms on multiple real-life datasets.