Browsing by Subject "LOCALIZATION"

Sort by: Order: Results:

Now showing items 1-20 of 47
  • Motazacker, Mahdi M.; Pirhonen, Juho; van Capelleveen, Julian C.; Weber-Boyvat, Marion; Kuivenhoven, Jan Albert; Shah, Saundarya; Hovingh, G. Kees; Metso, Jari; Li, Shiqian; Ikonen, Elina; Jauhiainen, Matti; Dallinga-Thie, Geesje M.; Olkkonen, Vesa M. (2016)
    Background and aims: Among subjects with high-density-lipoprotein cholesterol (HDL-C) below the 1st percentile in the general population, we identified a heterozygous variant OSBPL1A p.C39X encoding a short truncated protein fragment that co-segregated with low plasma HDL-C. Methods: We investigated the composition and function of HDL from the carriers and non-carriers and studied the properties of the mutant protein in cultured hepatocytes. Results: Plasma HDL-C and apolipoprotein (apo) A-I were lower in carriers versus non-carriers, whereas the other analyzed plasma components or HDL parameters did not differ. Sera of the carriers displayed a reduced capacity to act as cholesterol efflux acceptors (p <0.01), whereas the cholesterol acceptor capacity of their isolated HDL was normal. Fibroblasts from a p.C39X carrier showed reduced cholesterol efflux to lipid-free apoA-I but not to mature HDL particles, suggesting a specific defect in ABCA1-mediated efflux pathway. In hepatic cells, GFP-OSBPL1A partially co-localized in endosomes containing fluorescent apoA-I, suggesting that OSBPL1A may regulate the intracellular handling of apoA-I. The GFP-OSBPL1A-39X mutant protein remained in the cytosol and failed to interact with Rab7, which normally recruits OSBPL1A to late endosomes/lysosomes, suggesting that this mutation represents a loss-of-function. Conclusions: The present work represents the first characterization of a human OSBPL1A mutation. Our observations provide evidence that a familial loss-of-function mutation in OSBPL1A affects the first step of the reverse cholesterol transport process and associates with a low HDL-C phenotype. This suggests that rare mutations in OSBPL genes may contribute to dyslipidemias. (C) 2016 Elsevier Ireland Ltd. All rights reserved.
  • Vidilaseris, Keni; Kiriazis, Alexandros; Turku, Ainoleena; Khattab, Ayman Abdelnaby Shaaban; Johansson, Niklas G; Leino, Teppo Olavi; Kiuru, Paula Sinikka; Boije af Gennäs, Per Gustav; Meri, Seppo Kalevi; Yli-Kauhaluoma, Jari Tapani; Xhaard, Henri Guillaume Michel; Goldman, Adrian (2019)
    Membrane-bound pyrophosphatases are homodimeric integral membrane proteins that hydrolyze pyrophosphate into orthophosphates, coupled to the active transport of protons or sodium ions across membranes. They are important in the life cycle of bacteria, archaea, plants, and parasitic protists, but no homologous proteins exist in vertebrates, making them a promising drug target. Here, we report the first nonphosphorus allosteric inhibitor of the thermophilic bacterium Thermotoga maritima membrane-bound pyrophosphatase and its bound structure together with the substrate analog imidodiphosphate. The unit cell contains two protein homodimers, each binding a single inhibitor dimer near the exit channel, creating a hydrophobic clamp that inhibits the movement of beta-strand 1-2 during pumping, and thus prevents the hydrophobic gate from opening. This asymmetry of inhibitor binding with respect to each homodimer provides the first clear structural demonstration of asymmetry in the catalytic cycle of membrane-bound pyrophosphatases.
  • Arnulfo, Gabriele; Narizzano, Massimo; Cardinale, Francesco; Fato, Marco Massimo; Palva, Jaakko Matias (2015)
    Background: Invasive monitoring of brain activity by means of intracerebral electrodes is widely practiced to improve pre-surgical seizure onset zone localization in patients with medically refractory seizures. Stereo-Electroencephalography (SEEG) is mainly used to localize the epileptogenic zone and a precise knowledge of the location of the electrodes is expected to facilitate the recordings interpretation and the planning of resective surgery. However, the localization of intracerebral electrodes on post-implant acquisitions is usually time-consuming (i.e., manual segmentation), it requires advanced 3D visualization tools, and it needs the supervision of trained medical doctors in order to minimize the errors. In this paper we propose an automated segmentation algorithm specifically designed to segment SEEG contacts from a thresholded post-implant Cone-Beam CT volume (0.4 mm, 0.4 mm, 0.8 mm). The algorithm relies on the planned position of target and entry points for each electrode as a first estimation of electrode axis. We implemented the proposed algorithm into DEETO, an open source C++ prototype based on ITK library. Results: We tested our implementation on a cohort of 28 subjects in total. The experimental analysis, carried out over a subset of 12 subjects (35 multilead electrodes; 200 contacts) manually segmented by experts, show that the algorithm: (i) is faster than manual segmentation (i.e., less than 1s/subject versus a few hours) (ii) is reliable, with an error of 0.5 mm +/- 0.06 mm, and (iii) it accurately maps SEEG implants to their anatomical regions improving the interpretability of electrophysiological traces for both clinical and research studies. Moreover, using the 28-subject cohort we show here that the algorithm is also robust (error <0.005 mm) against deep-brain displacements (<12 mm) of the implanted electrode shaft from those planned before surgery. Conclusions: Our method represents, to the best of our knowledge, the first automatic algorithm for the segmentation of SEEG electrodes. The method can be used to accurately identify the neuroanatomical loci of SEEG electrode contacts by a non-expert in a fast and reliable manner.
  • Koskenvuo, Juha W.; Saarinen, Inka; Ahonen, Saija; Tommiska, Johanna; Weckström, Sini; Seppala, Eija H.; Tuupanen, Sari; Kangas-Kontio, Tiia; Schleit, Jennifer; Helio, Krista; Hathaway, Julie; Gummesson, Anders; Dahlberg, Pia; Ojala, Tiina H.; Vepsäläinen, Ville; Kytola, Ville; Muona, Mikko; Sistonen, Johanna; Salmenpera, Pertteli; Gentile, Massimiliano; Paananen, Jussi; Myllykangas, Samuel; Alastalo, Tero-Pekka; Heliö, Tiina (2021)
    Background Familial dilated cardiomyopathy (DCM) is typically a monogenic disorder with dominant inheritance. Although over 40 genes have been linked to DCM, more than half of the patients undergoing comprehensive genetic testing are left without molecular diagnosis. Recently, biallelic protein-truncating variants (PTVs) in the nebulin-related anchoring protein gene (NRAP) were identified in a few patients with sporadic DCM. Methods and results We determined the frequency of rare NRAP variants in a cohort of DCM patients and control patients to further evaluate role of this gene in cardiomyopathies. A retrospective analysis of our internal variant database consisting of 31,639 individuals who underwent genetic testing (either panel or direct exome sequencing) was performed. The DCM group included 577 patients with either a confirmed or suspected DCM diagnosis. A control cohort of 31,062 individuals, including 25,912 individuals with non-cardiac (control group) and 5,150 with non-DCM cardiac indications (Non-DCM cardiac group). Biallelic (n = 6) or two (n = 5) NRAP variants (two PTVs or PTV+missense) were identified in 11 unrelated probands with DCM (1.9%) but none of the controls. None of the 11 probands had an alternative molecular diagnosis. Family member testing supports co-segregation. Biallelic or potentially biallelic NRAP variants were enriched in DCM vs. controls (OR 1052, p Conclusion Loss-of-function in NRAP is a cause for autosomal recessive dilated cardiomyopathy, supporting its inclusion in comprehensive genetic testing.
  • Koskenvuo, Juha W.; Saarinen, Inka; Ahonen, Saija; Tommiska, Johanna; Weckström, Sini; Seppala, Eija H.; Tuupanen, Sari; Kangas-Kontio, Tiia; Schleit, Jennifer; Helio, Krista; Hathaway, Julie; Gummesson, Anders; Dahlberg, Pia; Ojala, Tiina H.; Vepsäläinen, Ville; Kytola, Ville; Muona, Mikko; Sistonen, Johanna; Salmenpera, Pertteli; Gentile, Massimiliano; Paananen, Jussi; Myllykangas, Samuel; Alastalo, Tero-Pekka; Heliö, Tiina (2021)
    Background Familial dilated cardiomyopathy (DCM) is typically a monogenic disorder with dominant inheritance. Although over 40 genes have been linked to DCM, more than half of the patients undergoing comprehensive genetic testing are left without molecular diagnosis. Recently, biallelic protein-truncating variants (PTVs) in the nebulin-related anchoring protein gene (NRAP) were identified in a few patients with sporadic DCM. Methods and results We determined the frequency of rare NRAP variants in a cohort of DCM patients and control patients to further evaluate role of this gene in cardiomyopathies. A retrospective analysis of our internal variant database consisting of 31,639 individuals who underwent genetic testing (either panel or direct exome sequencing) was performed. The DCM group included 577 patients with either a confirmed or suspected DCM diagnosis. A control cohort of 31,062 individuals, including 25,912 individuals with non-cardiac (control group) and 5,150 with non-DCM cardiac indications (Non-DCM cardiac group). Biallelic (n = 6) or two (n = 5) NRAP variants (two PTVs or PTV+missense) were identified in 11 unrelated probands with DCM (1.9%) but none of the controls. None of the 11 probands had an alternative molecular diagnosis. Family member testing supports co-segregation. Biallelic or potentially biallelic NRAP variants were enriched in DCM vs. controls (OR 1052, p Conclusion Loss-of-function in NRAP is a cause for autosomal recessive dilated cardiomyopathy, supporting its inclusion in comprehensive genetic testing.
  • Saarinen, Jukka Kalle Samuel; Gütter, Friederike; Lindman, Mervi M; Agopov, Mikael; Fraser-Miller, Sara J.; Scherließ, Regina; Jokitalo, Eija; Almeida Santos, Helder; Peltonen, Leena; Isomäki, Antti; Strachan, Clare J. (2019)
    A wide variety of nanoparticles are playing an increasingly important role in drug delivery. Label-free imaging techniques are especially desirable to follow the cellular uptake and intracellular fate of nanoparticles. The combined correlative use of different techniques, each with unique advantages, facilitates more detailed investigation about such interactions. The synergistic use of correlative coherent anti-Stokes Raman scattering and electron microscopy (C-CARS-EM) imaging offers label-free, chemically-specific, and (sub)-nanometer spatial resolution for studying nanoparticle uptake into cells as demonstrated in the current study. Coherent anti-Stokes Raman scattering (CARS) microscopy offers chemically-specific (sub)micron spatial resolution imaging without fluorescent labels while transmission electron microscopy (TEM) offers (sub)-nanometer scale spatial resolution and thus visualization of precise nanoparticle localization at the sub-cellular level. This proof-of-concept imaging platform with unlabeled drug nanocrystals and macrophage cells revealed good colocalization between the CARS signal and electron dense nanocrystals in TEM images. The correlative TEM images revealed subcellular localization of nanocrystals inside membrane bound vesicles, showing multivesicular body (MVB)-like morphology typical for late endosomes (LEs), endolysosomes, and phagolysosomes. C-CARS-EM imaging has much potential to study the interactions between a wide range of nanoparticles and cells with high precision and confidence.
  • Orosz, Zsuzsanna Z.; Bardos, Helga; Shemirani, Amir H.; Debreceni, Ildiko Beke; Lassila, Riitta; Riikonen, Antti S.; Hovinga, Johanna A. Kremer; Seiler, Theo G.; van Dorland, Hendrika A.; Schroeder, Verena; Boda, Zoltan; Nemes, Laszlo; Frueh Eppstein, Beatrice; Nagy, Bence; Facsko, Andrea; Kappelmayer, Janos; Muszbek, Laszlo (2019)
    Cellular factor XIII (cFXIII, FXIII-A(2)), a transglutaminase, has been demonstrated in a few cell types. Its main function is to cross-link proteins by isopeptide bonds. Here, we investigated the presence of cFXIII in cells of human cornea. Tissue sections of the cornea were immunostained for FXIII-A in combination with staining for CD34 antigen or isopeptide cross-links. Isolated corneal keratocytes were also evaluated by immunofluorescent microscopy and flow cytometry. FXIII-A in the corneal stroma was quantified by Western blotting. FXIII-A mRNA was detected by RT-qPCR. The cornea of FXIII-A-deficient patients was evaluated by cornea topography. FXIII-A was detected in 68 +/- 13% of CD34+ keratocytes. Their distribution in the corneal stroma was unequal; they were most abundant in the subepithelial tertile. cFXIII was of cytoplasmic localization. In the stroma, 3.64 ng cFXIII/mg protein was measured. The synthesis of cFXIII by keratocytes was confirmed by RT-qPCR. Isopeptide cross-links were detected above, but not within the corneal stroma. Slight abnormality of the cornea was detected in six out of nine FXIII-A-deficient patients. The presence of cFXIII in human keratocytes was established for the first time. cFXIII might be involved in maintaining the stability of the cornea and in the corneal wound healing process.
  • Hlushchenko, Iryna; Hotulainen, Pirta (2019)
    Synaptic plasticity underlies central brain functions, such as learning. Ca2+ signaling is involved in both strengthening and weakening of synapses, but it is still unclear how one signal molecule can induce two opposite outcomes. By identifying molecules, which can distinguish between signaling leading to weakening or strengthening, we can improve our understanding of how synaptic plasticity is regulated. Here, we tested gelsolin's response to the induction of chemical long-term potentiation (cLTP) or long-term depression (cLTD) in cultured rat hippocampal neurons. We show that gelsolin relocates from the dendritic shaft to dendritic spines upon cLTD induction while it did not show any relocalization upon cLTP induction. Dendritic spines are small actin-rich protrusions on dendrites, where LTD/LTP-responsive excitatory synapses are located. We propose that the LTD-induced modest - but relatively long-lasting - elevation of Ca2+ concentration increases the affinity of gelsolin to F-actin. As F-actin is enriched in dendritic spines, it is probable that increased affinity to F-actin induces the relocalization of gelsolin.
  • Boggavarapu, Nageswara Rao; Lalitkumar, Sujata; Joshua, Vijay; Kasvandik, Sergo; Salumets, Andres; Lalitkumar, Parameswaran Grace; Gemzell-Danielsson, Kristina (2016)
    The complexity of endometrial receptivity at the molecular level needs to be explored in detail to improve the management of infertility. Here, differential expression of transcriptomes in receptive endometrial glands and stroma revealed Ectonucleotide Pyrophosphatase/Phosphodiesterase 3 (ENPP3) as a progesterone regulated factor and confirmed by various methods, both at mRNA and protein level. The involvement of ENPP3 in embryo attachment was tested in an in vitro model for human embryo implantation. Interestingly, there was high expression of ENPP3 mRNA in stroma but not protein. Presence of N-glycosylated ENPP3 in receptive phase uterine fluid in women confirms its regulation by progesterone and makes it possible to use in a non-invasive test of endometrial receptivity.
  • Ruskamo, Salla; Krokengen, Oda C.; Kowal, Julia; Nieminen, Tuomo; Lehtimäki, Mari; Raasakka, Arne; Dandey, Venkata P.; Vattulainen, Ilpo; Stahlberg, Henning; Kursula, Petri (2020)
    Myelin protein P2 is a peripheral membrane protein of the fatty acid?binding protein family that functions in the formation and maintenance of the peripheral nerve myelin sheath. Several P2 gene mutations cause human Charcot-Marie-Tooth neuropathy, but the mature myelin sheath assembly mechanism is unclear. Here, cryo-EM of myelin-like proteolipid multilayers revealed an ordered three-dimensional (3D) lattice of P2 molecules between stacked lipid bilayers, visualizing supramolecular assembly at the myelin major dense line. The data disclosed that a single P2 layer is inserted between two bilayers in a tight intermembrane space of ?3 nm, implying direct interactions between P2 and two membrane surfaces. X-ray diffraction from P2-stacked bicelle multilayers revealed lateral protein organization, and surface mutagenesis of P2 coupled with structure-function experiments revealed a role for both the portal region of P2 and its opposite face in membrane interactions. Atomistic molecular dynamics simulations of P2 on model membrane surfaces suggested that Arg-88 is critical for P2-membrane interactions, in addition to the helical lid domain. Negatively charged lipid headgroups stably anchored P2 on the myelin-like bilayer surface. Membrane binding may be accompanied by opening of the P2 ?-barrel structure and ligand exchange with the apposing bilayer. Our results provide an unprecedented view into an ordered, multilayered biomolecular membrane system induced by the presence of a peripheral membrane protein from human myelin. This is an important step toward deciphering the 3D assembly of a mature myelin sheath at the molecular level.
  • Herranen, Anni; Ikäheimo, Kuu; Lankinen, Tuuli; Pakarinen, Emmi; Fritzsch, Bernd; Saarma, Mart; Lindahl, Maria; Pirvola, Ulla (2020)
    The non-conventional neurotrophic factor mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-resident protein that promotes ER homeostasis. MANF has a cytoprotective function, shown in the central nervous system neurons and pancreatic beta cells. Here, we report that MANF is expressed in the hair cells and neurons and in selected non-sensory cells of the cochlea and that Manf inactivation triggers upregulation of the ER chaperones in these cells. However, Manf inactivation resulted in the death of only outer hair cells (OHCs), the cells responsible for sound amplification in the cochlea. All OHCs were formed in Manf-inactivated mice, but progressive OHC death started soon after the onset of hearing function. The robust OHC loss was accompanied by strongly elevated hearing thresholds. Conditional Manf inactivation demonstrated that MANF has a local function in the cochlea. Immunostainings revealed the upregulation of CHOP, the pro-apoptotic component of the unfolded protein response (UPR), in Manf-inactivated OHCs, linking the UPR to the loss of these cells. The phenotype of Manf-inactivated OHCs was distinctly dependent on the mouse strain, such that the strains characterized by early-onset age-related hearing loss (C57BL/6J and CD-1) were affected. These results suggest that Manf deficiency becomes detrimental when accompanied by gene mutations that predispose to hearing loss, by intensifying ER dyshomeostasis. Together, MANF is the first growth factor shown to antagonize ER stress-mediated OHC death. MANF might serve as a therapeutic candidate for protection against hearing loss induced by the ER-machinery-targeting stressors.
  • Hernandez-Pavon, Julio C.; Makela, Niko; Lehtinen, Henri; Lioumis, Pantelis; Makela, Jyrki P. (2014)
  • Jheon, Andrew H.; Li, Chun-Ying; Wen, Timothy; Michon, Frederic; Klein, Ophir D. (2011)
  • Vuckovic, Dragana; Dawson, Sally; Scheffer, Deborah I.; Rantanen, Taina; Morgan, Anna; Di Stazio, Mariateresa; Vozzi, Diego; Nutile, Teresa; Concas, Maria P.; Biino, Ginevra; Nolan, Lisa; Bahl, Aileen; Loukola, Anu; Viljanen, Anne; Davis, Adrian; Ciullo, Marina; Corey, David P.; Pirastu, Mario; Gasparini, Paolo; Girotto, Giorgia (Oxford University Press, 2015)
    Hearing loss and individual differences in normal hearing both have a substantial genetic basis. Although many new genes contributing to deafness have been identified, very little is known about genes/variants modulating the normal range of hearing ability. To fill this gap, we performed a two-stage meta-analysis on hearing thresholds (tested at 0.25, 0.5, 1, 2, 4, 8 kHz) and on pure-tone averages (low-, medium-and high-frequency thresholds grouped) in several isolated populations from Italy and Central Asia (total N = 2636). Here, we detected two genome-wide significant loci close to PCDH20 and SLC28A3 (top hits: rs78043697, P = 4.71E-10 and rs7032430, P = 2.39E-09, respectively). For both loci, we sought replication in two independent cohorts: B58C from the UK (N = 5892) and FITSA from Finland (N = 270). Both loci were successfully replicated at a nominal level of significance (P <0.05). In order to confirm our quantitative findings, we carried out RT-PCR and reported RNA-Seq data, which showed that both genes are expressed in mouse inner ear, especially in hair cells, further suggesting them as good candidates for modulatory genes in the auditory system. Sequencing data revealed no functional variants in the coding region of PCDH20 or SLC28A3, suggesting that variation in regulatory sequences may affect expression. Overall, these results contribute to a better understanding of the complex mechanisms underlying human hearing function.
  • Vuckovic, Dragana; Dawson, Sally; Scheffer, Deborah I.; Rantanen, Taina; Morgan, Anna; Di Stazio, Mariateresa; Vozzi, Diego; Nutile, Teresa; Concas, Maria P.; Biino, Ginevra; Nolan, Lisa; Bahl, Aileen; Loukola, Anu; Viljanen, Anne; Davis, Adrian; Ciullo, Marina; Corey, David P.; Pirastu, Mario; Gasparini, Paolo; Girotto, Giorgia (2015)
    Hearing loss and individual differences in normal hearing both have a substantial genetic basis. Although many new genes contributing to deafness have been identified, very little is known about genes/variants modulating the normal range of hearing ability. To fill this gap, we performed a two-stage meta-analysis on hearing thresholds (tested at 0.25, 0.5, 1, 2, 4, 8 kHz) and on pure-tone averages (low-, medium-and high-frequency thresholds grouped) in several isolated populations from Italy and Central Asia (total N = 2636). Here, we detected two genome-wide significant loci close to PCDH20 and SLC28A3 (top hits: rs78043697, P = 4.71E-10 and rs7032430, P = 2.39E-09, respectively). For both loci, we sought replication in two independent cohorts: B58C from the UK (N = 5892) and FITSA from Finland (N = 270). Both loci were successfully replicated at a nominal level of significance (P <0.05). In order to confirm our quantitative findings, we carried out RT-PCR and reported RNA-Seq data, which showed that both genes are expressed in mouse inner ear, especially in hair cells, further suggesting them as good candidates for modulatory genes in the auditory system. Sequencing data revealed no functional variants in the coding region of PCDH20 or SLC28A3, suggesting that variation in regulatory sequences may affect expression. Overall, these results contribute to a better understanding of the complex mechanisms underlying human hearing function.
  • Wang, Sheng H.; Lobier, Muriel; Siebenhuhner, Felix; Puoliväli, Tuomas; Palva, Satu; Palva, J. Matias (2018)
    Inter-areal functional connectivity (FC), neuronal synchronization in particular, is thought to constitute a key systems-level mechanism for coordination of neuronal processing and communication between brain regions. Evidence to support this hypothesis has been gained largely using invasive electrophysiological approaches. In humans, neuronal activity can be non-invasively recorded only with magneto-and electroencephalography (MEG/EEG), which have been used to assess FC networks with high temporal resolution and whole-scalp coverage. However, even in source-reconstructed MEG/EEG data, signal mixing, or "source leakage", is a significant confounder for FC analyses and network localization. Signal mixing leads to two distinct kinds of false-positive observations: artificial interactions (AI) caused directly by mixing and spurious interactions (SI) arising indirectly from the spread of signals from true interacting sources to nearby false loci. To date, several interaction metrics have been developed to solve the AI problem, but the SI problem has remained largely intractable in MEG/EEG all-to-all source connectivity studies. Here, we advance a novel approach for correcting SIs in FC analyses using source-reconstructed MEG/EEG data. Our approach is to bundle observed FC connections into hyperedges by their adjacency in signal mixing. Using realistic simulations, we show here that bundling yields hyperedges with good separability of true positives and little loss in the true positive rate. Hyperedge bundling thus significantly decreases graph noise by minimizing the false-positive to true-positive ratio. Finally, we demonstrate the advantage of edge bundling in the visualization of large-scale cortical networks with real MEG data. We propose that hypergraphs yielded by bundling represent well the set of true cortical interactions that are detectable and dissociable in MEG/EEG connectivity analysis.
  • Ning, Lin; Paetau, Sonja; Nyman-Huttunen, Henrietta; Tian, Li; Gahmberg, Carl G. (2015)
    ICAM-5 is a negative regulator of dendritic spine maturation and facilitates the formation of filopodia. Its absence results in improved memory functions, but the mechanisms have remained poorly understood. Activation of NMDA receptors induces ICAM-5 ectodomain cleavage through a matrix metalloproteinase (MMP)-dependent pathway, which promotes spine maturation and synapse formation. Here, we report a novel, ICAM-5-dependent mechanism underlying spine maturation by regulating the dynamics and synaptic distribution of a-actinin. We found that GluN1 and ICAM-5 partially compete for the binding to alpha-actinin; deletion of the cytoplasmic tail of ICAM-5 or ablation of the gene resulted in increased association of GluN1 with alpha-actinin, whereas internalization of ICAM-5 peptide perturbed the GluN1/alpha-actinin interaction. NMDA treatment decreased alpha-actinin binding to ICAM-5, and increased the binding to GluN1. Proper synaptic distribution of alpha-actinin requires the ICAM-5 cytoplasmic domain, without which alpha-actinin tended to accumulate in filopodia, leading to F-actin reorganization. The results indicate that ICAM-5 retards spine maturation by preventing reorganization of the actin cytoskeleton, but NMDA receptor activation is sufficient to relieve the brake and promote the maturation of spines.