Browsing by Subject "LONG-RANGE"

Sort by: Order: Results:

Now showing items 1-20 of 21
  • Lappi, T. (2015)
    Recent experimental results have revealed a surprisingly rich structure of multiparticle azimuthal correlations in high energy proton-nucleus collisions. Final state collective effects can be responsible for many of the observed effects, but it has recently been argued that a part of these correlations are present already in the wavefunctions of the colliding particles. We evaluate the momentum space 2-particle cumulant azimuthal anisotropy coefficients v(n){2}, n = 2, 3, 4 from fundamental representation Wilson line distributions describing the high energy nucleus. These would correspond to the flow coefficients in very forward proton-nucleus scattering. We find significant differences between Wilson lines from the MV model and from JIMWLK evolution. The magnitude and qualitative transverse momentum dependence of the v(n){2} values suggest that the fluctuations present in the initial fields are a significant contribution to the observed anisotropies. (C) 2015 The Author. Published by Elsevier B.V.
  • The CMS collaboration; Sirunyan, A. M.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampen, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Linden, T.; Luukka, P.; Mäenpää, T.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T. (2020)
    Bose-Einstein correlations of charged hadrons are measured over a broad multiplicity range, from a few particles up to about 250 reconstructed charged hadrons in proton-proton collisions at s = 13 TeV. The results are based on data collected using the CMS detector at the LHC during runs with a special low-pileup configuration. Three analysis techniques with different degrees of dependence on simulations are used to remove the non-Bose-Einstein background from the correlation functions. All three methods give consistent results. The measured lengths of homogeneity are studied as functions of particle multiplicity as well as average pair transverse momentum and mass. The results are compared with data from both CMS and ATLAS at s = 7 TeV, as well as with theoretical predictions.
  • The CMS collaboration; Sirunyan, A. M.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T. (2018)
    The elliptic azimuthal anisotropy coefficient (upsilon(2)) is measured for charm (D-0) and strange (K-S(0), Lambda, Xi(-), and Omega(-)) hadrons, using a data sample of p + Pb collisions collected by the CMS experiment, at a nucleonnucleon center-of- mass energy of root(NN)-N-s = 8.16 TeV. A significant positive upsilon(2) signal from long- range azimuthal correlations is observed for all particle species in high- multiplicity p + Pb collisions. The measurement represents the first observation of possible long-range collectivity for open heavy flavor hadrons in small systems. The results suggest that charm quarks have a smaller upsilon(2) than the lighter quarks, probably reflecting a weaker collective behavior. This effect is not seen in the larger PbPb collision system at root(NN)-N-s = 5.02 TeV, also presented.
  • Adam, J.; Brucken, E. J.; Chang, B.; Kim, D. J.; Mieskolainen, M. M.; Orava, R.; Rak, J.; Räsänen, S. S.; Saarinen, S.; Slupecki, M.; Snellman, T. W.; Trzaska, W. H.; Vargyas, M.; Viinikainen, J.; The ALICE collaboration (2017)
    At sufficiently high temperature and energy density, nuclear matter undergoes a transition to a phase in which quarks and gluons are not confined: the quark-gluon plasma (QGP)(1). Such an exotic state of strongly interacting quantum chromodynamics matter is produced in the laboratory in heavy nuclei high-energy collisions, where an enhanced production of strange hadrons is observed(2-6). Strangeness enhancement, originally proposed as a signature of QGP formation in nuclear collisions(7), is more pronounced for multi-strange baryons. Several effects typical of heavy-ion phenomenology have been observed in high-multiplicity proton-proton (pp) collisions(8,9), but the enhanced production of multi-strange particles has not been reported so far. Here we present the first observation of strangeness enhancement in high-multiplicity proton-proton collisions. We find that the integrated yields of strange and multi-strange particles, relative to pions, increases significantly with the event charged-particle multiplicity. The measurements are in remarkable agreement with the p-Pb collision results(10,11), indicating that the phenomenon is related to the final system created in the collision. In high-multiplicity events strangeness production reaches values similar to those observed in Pb-Pb collisions, where a QGP is formed.
  • Adam, J.; Adamova, D.; Aggarwal, M. M.; Rinella, G. Aglieri; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S. U.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Molina, R. Alfaro; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Anticic, T.; Antinori, F.; Antonioli, R.; Aphecetche, L.; Appelshaeuser, H.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Arsene, I. C.; Arslandok, M.; Brucken, E. J.; Chang, B.; Hilden, T. E.; Kim, D. J.; Kral, J.; Mieskolainen, M. M.; Orava, R.; Rak, J.; Räsänen, S. S.; Snellman, T. W.; Trzaska, W. H. (2016)
    Two-particle angular correlations between trigger particles in the forward pseudorapidity range (2.5 <vertical bar eta vertical bar <4.0) and associated particles in the central range(vertical bar eta vertical bar <1.0) are measured with the ALICE detector in p-Pb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV. The trigger particles are reconstructed using the muon spectrometer, and the associated particles by the central barrel tracking detectors. In high-multiplicity events, the double-ridge structure, previously discovered in two-particle angular correlations at midrapidity, is found to persist to the pseudorapidity ranges studied in this Letter. The second-order Fourier coefficients for muons in high-multiplicity events are extracted after jet-like correlations from low-multiplicity events have been subtracted. The coefficients are found to have a similar transverse momentum(p(T)) dependence in p-going (p-Pb) and Pb-going (Pb-p) configurations, with the Pb-going coefficients larger by about 16 +/- 6%, rather independent of p(T) within the uncertainties of the measurement. The data are compared with calculations using the AMPT model, which predicts a different p(T) and eta dependence than observed in the data. The results are sensitive to the parent particle v(2) and composition of reconstructed muon tracks, where the contribution from heavy flavour decays is expected to dominate at p(T) > 2GeV/c. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B. V.
  • Demirci, Sami Petteri; Lappi, Tuomas; Schlichting, S. (2021)
    We calculate eccentricities in high energy proton-nucleus collisions, by calculating correlation functions of the energy density field of the glasma immediately after the collision event at proper time tau = 0(+). We separately consider the effects of color charge and geometrical hot spot fluctuations, analytically performing the averages over both in a dilute-dense limit. We show that geometric fluctuations of hot spots inside the proton are the dominant source of eccentricity whereas color charge fluctuations only give a negligible correction. The size and number of hot spots are the most important parameters characterizing the eccentricities.
  • The ALICE collaboration; Acharya, S.; Brucken, E. J.; Chang, B.; Hilden, T. E.; Kim, D. J.; Litichevskyi, V.; Mieskolainen, M. M.; Orava, R.; Parkkila, J. E.; Rak, J.; Räsänen, S. S.; Saarinen, S.; Slupecki, M.; Snellman, T. W.; Trzaska, W. H.; Vargyas, M.; Viinikainen, J. (2018)
    Inclusive J/psi production is studied in p-Pb interactions at a centre-of-mass energy per nucleon-nucleon collision root s(NN) = 8.16 TeV, using the ALICE detector at the CERN LHC. The J/psi meson is reconstructed, via its decay to a muon pair, in the centreof-mass rapidity intervals 2.03 < Y-cms < 3.53 and -4.46 < Y-cms < -2.96, where positive and negative Y(cms )refer to the p-going and Pb-going direction, respectively. The transverse momentum coverage is PT < 20 GeV/c. In this paper, Y-cms- and P-T-differential cross sections for inclusive J/psi production are presented, and the corresponding nuclear modification factors R-pPb are shown. Forward results show a suppression of the J/psi yield with respect to pp collisions, concentrated in the region P-T less than or similar to 5 GeV/c. At backward rapidity no significant suppression is observed. The results are compared to previous measurements by ALICE in p-Pb collisions at root s(NN) = 5.02 TeV and to theoretical calculations. Finally, the ratios R-FB between forward- and backward-Y-cms R-pPb values are shown and discussed.
  • Adam, J.; Brucken, E. J.; Chang, B.; Kim, D. J.; Litichevskyi, V.; Mieskolainen, M. M.; Orava, R.; Rak, J.; Räsänen, S. S.; Snellman, T. W.; Trzaska, W. H.; Viinikainen, J.; The ALICE collaboration (2017)
    Two-particle angular correlations were measured in pp collisions at root s = 7 TeV for pions, kaons, protons, and lambdas, for all particle/anti-particle combinations in the pair. Data for mesons exhibit an expected peak dominated by effects associated with mini-jets and are well reproduced by general purpose Monte Carlo generators. However, for baryon-baryon and anti-baryon-anti-baryon pairs, where both particles have the same baryon number, a near-side anti-correlation structure is observed instead of a peak. This effect is interpreted in the context of baryon production mechanisms in the fragmentation process. It currently presents a challenge to Monte Carlo models and its origin remains an open question.
  • The ALICE collaboration; Adamová, D.; Brucken, E.J.; Chang, B.; Kim, D.J.; Litichevskyi, V.; Mieskolainen, M.M.; Orava, R.; Rak, J.; Räsänen, S.S.; Saarinen, S.; Slupecki, M.; Snellman, T.W.; Trzaska, W.H.; Vargyas, M.; Viinikainen, J. (2018)
    We report measurements of the inclusive J/psi yield and average transverse momentum as a function of charged-particle pseudorapidity density dNch/d.in p-Pb collisions at root s(NN)= 5.02 TeVwith ALICE at the LHC. The observables are normalised to their corresponding averages in non-single diffractive events. An increase of the normalised J/psi yield with normalised dN(ch)/d(eta), measured at mid-rapidity, is observed at mid-rapidity and backward rapidity. At forward rapidity, a saturation of the relative yield is observed for high charged-particle multiplicities. The normalised average transverse momentum at forward and backward rapidities increases with multiplicity at low multiplicities and saturates beyond moderate multiplicities. In addition, the forward-to-backward nuclear modification factor ratio is also reported, showing an increasing suppression of J/psi production at forward rapidity with respect to backward rapidity for increasing charged-particle multiplicity. (C) 2017 The Author. Published by Elsevier B. V.
  • Adam, J.; Brucken, E. J.; Chang, B.; Hilden, T. E.; Kim, D. J.; Kral, J.; Mieskolainen, M. M.; Rak, J.; Rasanen, S. S.; Snellman, T. W.; Trzaska, W. H.; The ALICE collaboration (2015)
    Charged jet production cross sections in p-Pb collisions at root s(NN) = 5.02 TeV measured with the ALICE detector at the LHC are presented. Using the anti-k(T) algorithm, jets have been reconstructed in the central rapidity region from charged particles with resolution parameters R = 0.2 and R = 0.4. The reconstructed jets have been corrected for detector effects and the underlying event background. To calculate the nuclear modification factor, R-pPb, of charged jets in p-Pb collisions, a pp reference was constructed by scaling previously measured charged jet spectra at root s = 7 TeV. In the transverse momentum range 20
  • Adam, J.; Adamova, D.; Aggarwal, M. M.; Rinella, G. Aglieri; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Anticic, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshaeuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Brucken, E. J.; Chang, B.; Kim, D. J.; Krizek, F.; Mieskolainen, M. M.; Orava, R.; Rak, J.; Räsänen, S. S.; Snellman, T. W.; Trzaska, W. H. (2016)
    The measurement of prompt D-meson production as a function of multiplicity in p-Pb collisions at TeV with the ALICE detector at root s(NN) the LHC is reported. D-0, D+ and Dau+ mesons are reconstructed via their hadronic decay channels in the centre-of-mass rapidity range -0.96 <y(cms) <0.04 and transverse momentum interval 1 <p(T) <24 GeV/c. The multiplicity dependence of D-meson production is examined by either comparing yields in p-Pb collisions in different event classes, selected based on the multiplicity of produced particles or zero-degree energy, with those in pp collisions, scaled by the number of binary nucleon-nucleon collisions (nuclear modification factor); as well as by evaluating the per-event yields in p-Pb collisions in different multiplicity intervals normalised to the multiplicity-integrated ones (relative yields). The nuclear modification factors for D-0, D+ and D*(+) are consistent with one another. The D-meson nuclear modification factors as a function of the zero-degree energy are consistent with unity within uncertainties in the measured p(T) regions and event classes. The relative D-meson yields, calculated in various p(T) intervals, increase as a function of the charged-particle multiplicity. The results are compared with the equivalent pp measurements at root s = 7 TeV as well as with EPOS 3 calculations.
  • PHENIX Collaboration; Adare, A.; Kim, D. J.; Novitzky, N.; Rak, J. (2018)
    We present measurements of the transverse-momentum dependence of elliptic flow upsilon(2) for identified pions and (anti)protons at midrapidity (vertical bar eta vertical bar <0.35), in 0%-5% central p + Au and He-3 + Au collisions at ,root s(NN) = 200 GeV. When taken together with previously published measurements in d + Au collisions at root s(NN) = 200 GeV, the results cover a broad range of small-collision-system multiplicities and intrinsic initial geometries. We observe a clear mass-dependent splitting of upsilon(2) (p(T)) in d + Au and He-3 + Au collisions, just as in large nucleus-nucleus (A + A) collisions, and a smaller splitting in p + Au collisions. Both hydrodynamic and transport model calculations successfully describe the data at low p(T) (
  • PHENIX Collaboration; Aidala, C.; Kim, D. J. (2018)
    Recently, multiparticle-correlation measurements of relativistic p/d(3)He + Au, p + Pb, and even p + p collisions show surprising collective signatures. Here, we present beam-energy-scan measurements of two, four-, and six-particle angular correlations in d + Au collisions at root s(NN) = 200, 62.4, 39, and 19.6 GeV. We also present measurements of two-and four-particle angular correlations in p + Au collisions at root s(NN) = 200 GeV. We find the four-particle cumulant to be real valued for d + Au collisions at all four energies. We also find that the four-particle cumulant in p + Au has the opposite sign as that in d + Au. Further, we find that the six-particle cumulant agrees with the four-particle cumulant in d + Au collisions at 200 GeV, indicating that nonflow effects are subdominant. These observations provide strong evidence that the correlations originate from the initial geometric configuration, which is then translated into the momentum distribution for all particles, commonly referred to as collectivity.
  • Adam, J.; Adamova, D.; Aggarwal, M. M.; Rinella, G. Aglieri; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anticic, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshaeuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Brucken, E. J.; Chang, B.; Kim, D. J.; Mieskolainen, M. M.; Orava, R.; Rak, J.; Räsänen, S. S.; Snellman, T. W.; Trzaska, W. H. (2016)
    The production of charged pions, kaons and (anti)protons has been measured at mid-rapidity (-0.5 <y <0) in p-Pb collisions at root s(NN) = 5.02 TeV using the ALICE detector at the LHC. Exploiting particle identification capabilities at high transverse momentum (p(T)), the previously published p(T) spectra have been extended to include measurements up to 20 GeV/c for seven event multiplicity classes. The p(T) spectra for pp collisions at = 7 TeV, needed to interpolate a pp reference spectrum, have also been extended up to 20 GeV/c to measure the nuclear modification factor (R-ppb) in non-single diffractive p-Pb collisions. At intermediate transverse momentum (2 <p(T) <10 GeV/c) the proton-to-pion ratio increases with multiplicity in p-Pb collisions, a similar effect is not present in the kaon-to-pion ratio. The p(T) dependent structure of such increase is qualitatively similar to those observed in pp and heavy-ion collisions. At high p(T) (>10 GeV/c), the particle ratios are consistent with those reported for pp and Pb-Pb collisions at the LHC energies. At intermediate p(T) the (anti)proton R-ppb shows a Cronin-like enhancement, while pions and kaons show little or no nuclear modification. At high p(T) the charged pion, kaon and (anti)proton R-ppb are consistent with unity within statistical and systematic uncertainties. (C) 2016 The Author. Published by Elsevier B.V.
  • Abelev, B.; Adam, J.; Adamova, D.; Aggarwal, M. M.; Agnello, M.; Agostinelli, A.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahmed, I.; Ahn, S. U.; Ahn, S. A.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alta, T.; Altinpinar, S.; Altsybeev, I.; Garcia Prado, C. Alves; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Anticic, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshaeuser, H.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Chang, B.; Hilden, T. E.; Kim, D. J.; Kral, J.; Pohjoisaho, E. H. O.; Rak, J.; Räsänen, S. S.; Trzaska, W. H. (2015)
    Two-particle angular correlations between unidentified charged trigger and associated particles are measured by the ALICE detector in p-Pb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum range 0.7 <p(T),(assoc) <p(T),(trig) <5.0 GeV/c is examined, to include correlations induced by jets originating from low momentum-transfer scatterings (minijets). The correlations expressed as associated yield per trigger particle are obtained in the pseudorapidity range vertical bar eta vertical bar <0.9. The near-side long-range pseudorapidity correlations observed in high-multiplicity p-Pb collisions are subtracted from both near-side short-range and away-side correlations in order to remove the non-jet-like components. The yields in the jet-like peaks are found to be invariant with event multiplicity with the exception of events with low multiplicity. This invariance is consistent with the particles being produced via the incoherent fragmentation of multiple parton-parton scatterings, while the yield related to the previously observed ridge structures is not jet-related. The number of uncorrelated sources of particle production is found to increase linearly with multiplicity, suggesting no saturation of the number of multi-parton interactions even in the highest multiplicity p-Pb collisions. Further, the number scales only in the intermediate multiplicity region with the number of binary nucleon-nucleon collisions estimated with a Glauber Monte-Carlo simulation. (C) 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
  • The ALICE collaboration; Acharya, S.; Brucken, E. J.; Chang, B.; Kim, D. J.; Litichevskyi, V.; Mieskolainen, M. M.; Orava, R.; Rak, J.; Räsänen, S. S.; Saarinen, S.; Slupecki, M.; Snellman, T. W.; Trzaska, W. H.; Vargyas, M.; Viinikainen, J. (2018)
    Neutral pion and eta meson invariant differential yields were measured in non-single diffractive p-Pb collisions at root S-NN = 5.02 TeV with the ALICE experiment at the CERN LHC. The analysis combines results from three complementary photon measurements, utilizing the PHOS and EMCal calorimeters and the Photon Conversion Method. The invariant differential yields of pi(0) and eta meson inclusive production are measured near mid-rapidity in a broad transverse momentum range of 0.3 < p(T) < 20 GeV/c and 0.7 < p(T) < 20 GeV/c, respectively. The measured eta/pi(0) ratio increases with p(T) and saturates for p(T) > 4 GeV/c at 0.483 +/- 0.015(stat) +/- 0.015(sys). A deviation from m(T) scaling is observed for p(T) < 2 GeV/c. The measured eta/pi(0) ratio is consistent with previous measurements from proton-nucleus and pp collisions over the full pi range. The measured eta/pi(0) ratio at high p(T) also agrees within uncertainties with measurements from nucleus nucleus collisions. The pi(0) and eta yields in p-Pb relative to the scaled pp interpolated reference, R-pPb, are presented for 0.3 < p(T) < 20 GeV/c and 0.7 < p(T) < 20 GeV/c, respectively. The results are compared with theoretical model calculations. The values of R-pPb are consistent with unity for transverse momenta above 2 GeV/c. These results support the interpretation that the suppressed yield of neutral mesons measured in Pb-Pb collisions at LHC energies is due to parton energy loss in the hot QCD medium.
  • The CMS collaboration; Sirunyan, A. M.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T. (2019)
    A measurement of the elliptic flow (v(2)) of prompt J/psi mesons in high-multiplicity pPbcollisions is reported using data collected by the CMS experiment at a nucleon-nucleon center-of-mass energy root s(NN)= 8.16 TeV. Prompt J/psi mesons decaying into two muons are reconstructed in the rapidity region in the nucleon-nucleon center-of-mass frame (y(cm)), corresponding to either -2.86 < y(cm) < -1.86 or 0.94 < y(cm)< 1.94. The average v(2) result from the two rapidity ranges is reported over the transverse momentum (p(T)) range from 0.2 to 10 GeV. Positive v(2) values are observed for the prompt J/psi meson, as extracted from long-range two-particle correlations with charged hadrons, for 2 < p(T) < 8 GeV. The prompt J/psi results are compared with previous CMS measurements of elliptic flow for open charm mesons (D-0) and strange hadrons. From these measurements, constraints can be obtained on the collective dynamics of charm quarks produced in high-multiplicity events arising from small systems. (c) 2019 The Author(s). Published by Elsevier B.V.
  • Acharya, S.; Brucken, E. J.; Chang, B.; Kim, D. J.; Litichevskyi, V.; Mieskolainen, M. M.; Orava, R.; Rak, J.; Räsänen, S. S.; Snellman, T. W.; Trzaska, W. H.; Viinikainen, J.; The ALICE collaboration (2017)
    The production of muons from heavy-flavour hadron decays in p-Pb collisions at root s(NN) = 5.02 TeV was studied for 2 <p(T) <16 GeV/c with the ALICE detector at the CERN LHC. The measurement was performed at forward (p-going direction) and backward (Pb-going direction) rapidity, in the ranges of rapidity in the centre-of-mass system (cms) 2.03 <y(cms) <3.53 and -4.46 <y(cms) <-2.96, respectively. The production cross sections and nuclear modification factors are presented as a function of transverse momentum (P-T). At forward rapidity, the nuclear modification factor is compatible with unity while at backward rapidity, in the interval 2.5 <p(T) <3.5 GeV/c, it is above unity by more than 2 sigma. The ratio of the forward -to -backward production cross sections is also measured in the overlapping interval 2.96 <|y(cms)| <3.53 and is smaller than unity by 3.7 sigma in 2.5 <p(T) <3.5 GeV/c. The data are described by model calculations including cold nuclear matter effects. (C) 2017 The Author(s). Published by Elsevier B.V.
  • The CMS collaboration; Sirunyan, A. M.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Talvitie, J.; Tuuva, T. (2018)
    A search has been performed for heavy resonances decaying to ZZ or ZW in 2l2q final states, with two charged leptons (l = e, mu) produced by the decay of a Z boson, and two quarks produced by the decay of a W or Z boson. The analysis is sensitive to resonances with masses in the range from 400 to 4500 GeV. Two categories are defined based on the merged or resolved reconstruction of the hadronically decaying vector boson, optimized for high- and low-mass resonances, respectively. The search is based on data collected during 2016 by the CMS experiment at the LHC in proton-proton collisions with a center-of-mass energy of root s = 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1). No excess is observed in the data above the standard model background expectation. Upper limits on the production cross section of heavy, narrow spin-1 and spin-2 resonances are derived as a function of the resonance mass, and exclusion limits on the production of W' bosons and bulk graviton particles are calculated in the framework of the heavy vector triplet model and warped extra dimensions, respectively.
  • The ALICE collaboration; Acharya, S.; Brucken, E. J.; Chang, B.; Kim, D. J.; Litichevskyi, V.; Mieskolainen, M. M.; Orava, R.; Rak, J.; Räsänen, S. S.; Saarinen, S.; Slupecki, M.; Snellman, T. W.; Trzaska, W. H.; Vargyas, M.; Viinikainen, J. (2018)
    We present a measurement of azimuthal correlations between inclusive J/psi and charged hadrons in p-Pb collisions recorded with the ALICE detector at the CERN LHC. The J/psi are reconstructed at forward (p-going, 2.03 <y <3.53) and backward (Pb-going, -4.46 <y <-2.96) rapidity via their mu(+)mu(-) decay channel, while the charged hadrons are reconstructed at mid-rapidity (vertical bar eta vertical bar <1.8). The correlations are expressed in terms of associated charged-hadron yields per W . trigger. A rapidity gap of at least 1.5 units is required between the trigger J/psi and the associated charged hadrons. Possible correlations due to collective effects are assessed by subtracting the associated per-trigger yields in the low-multiplicity collisions from those in the high-multiplicity collisions. After the subtraction, we observe a strong indication of remaining symmetric structures at Delta phi approximate to 0 and Delta phi approximate to pi), similar to those previously found in two-particle correlations at middle and forward rapidity. The corresponding second-order Fourier coefficient (v(2) ) in the transverse momentum interval between 3 and 6 GeV/c is found to be positive with a significance of about 5 sigma. The obtained results are similar to the J/psi v(2) coefficients measured in Pb-Pb collisions at root s(NN) = 5.02 TeV, suggesting a common mechanism at the origin of the J/psi v(2) . (C) 2018 The Author. Published by Elsevier B.V.