Browsing by Subject "LONG-TERM MEASUREMENTS"

Sort by: Order: Results:

Now showing items 1-10 of 10
  • Peltoniemi, Mikko; Pulkkinen, Minna; Aurela, Mika; Pumpanen, Jukka; Kolari, Pasi; Makela, Annikki (2015)
    Simple approaches to predicting ecosystem fluxes are useful in large-scale applications because existing data rarely support justified use of complex models. We developed a model of daily ecosystem gross primary production (P), evapotranspiration (E), and soil water content (theta), which only requires standard weather data and information about the fraction of absorbed radiation. We estimated the parameters of the model for two boreal Scots pine eddy-covariance sites (Hyytiala and Sodankyla). The model predicted P and E adequately for Hyytiala for both calibration and additional test years. The model calibrated for Hyytiala slightly overestimated P and E in Sodankyla, but its performance levelled with the model calibrated for Sodankyla in a dry year. Sensitivity analysis of the model implied that drought prediction is sensitive, not only to key E submodel parameters, but also to P submodel parameters. Further improvement and calibrations of the model could benefit from forest sites with varying canopy and different species structures.
  • Lappalainen, Hanna K.; Sevanto, Sanna; Dal Maso, Miikka; Taipale, Risto; Kajos, Maija; Kolari, Pasi; Back, Jaana (2013)
  • Rantala, P.; Aalto, J.; Taipale, R.; Ruuskanen, T. M.; Rinne, J. (2015)
    Long-term flux measurements of volatile organic compounds (VOC) over boreal forests are rare, although the forests are known to emit considerable amounts of VOCs into the atmosphere. Thus, we measured fluxes of several VOCs and oxygenated VOCs over a Scots-pine-dominated boreal forest semi-continuously between May 2010 and December 2013. The VOC profiles were obtained with a proton transfer reaction mass spectrometry, and the fluxes were calculated using vertical concentration profiles and the surface layer profile method connected to the Monin-Obukhov similarity theory. In total fluxes that differed significantly from zero on a monthly basis were observed for 13 out of 27 measured masses. Monoterpenes had the highest net emission in all seasons and statistically significant positive fluxes were detected from March until October. Other important compounds emitted were methanol, ethanol+ formic acid, acetone and isoprene+ methylbutenol. Oxygenated VOCs showed also deposition fluxes that were statistically different from zero. Isoprene+ methylbutenol and monoterpene fluxes followed well the traditional isoprene algorithm and the hybrid algorithm, respectively. Emission potentials of monoterpenes were largest in late spring and autumn which was possibly driven by growth processes and decaying of soil litter, respectively. Conversely, largest emission potentials of isoprene+ methylbutenol were found in July. Thus, we concluded that most of the emissions of m/z 69 at the site consisted of isoprene that originated from broadleaved trees. Methanol had deposition fluxes especially before sunrise. This can be connected to water films on surfaces. Based on this assumption, we were able to build an empirical algorithm for bi-directional methanol exchange that described both emission term and deposition term. Methanol emissions were highest in May and June and deposition level increased towards autumn, probably as a result of increasing relative humidity levels leading to predominance of deposition.
  • Smolander, S.; He, Q.; Mogensen, D.; Zhou, L.; Back, J.; Ruuskanen, T.; Noe, S.; Guenther, A.; Aaltonen, Hermanni; Kulmala, M.; Boy, M. (2014)
    Biogenic volatile organic compounds (BVOCs) are essential in atmospheric chemistry because of their chemical reactions that produce and destroy tropospheric ozone, their effects on aerosol formation and growth, and their potential influence on global warming. As one of the important BVOC groups, monoterpenes have been a focus of scientific attention in atmospheric research. Detailed regional measurements and model estimates are needed to study emission potential and the monoterpene budget on a global scale. Since the use of empirical measurements for upscaling is limited by many physical and biological factors, such as genetic variation, temperature and light, water availability, seasonal changes, and environmental stresses, comprehensive inventories over larger areas are difficult to obtain. We applied the boundary-layer–chemistry-transport model SOSA (model to Simulate the concentrations of Organic vapours and Sulphuric Acid) to investigate Scots pine (Pinus sylvestris) monoterpene emissions in a boreal coniferous forest at the SMEAR (Station for Measuring forest Ecosystem–Atmosphere Relations) II site, southern Finland. SOSA was applied to simulate monoterpene emissions with three different emission modules: the semiempirical G95, MEGAN (Model of Emissions of Gases and Aerosols from Nature) 2.04 with improved descriptions of temperature and light responses and including also carbonyl emissions, and a process-based model SIM–BIM (Seasonal Isoprenoid synthase Model – Biochemical Isoprenoid biosynthesis Model). For the first time, the emission models included seasonal and diurnal variations in both quantity and chemical species of emitted monoterpenes, based on parameterizations obtained from field measurements. Results indicate that modelling and observations agreed reasonably well and that the model can be used for investigating regional air chemistry questions related to monoterpenes. The predominant modelled monoterpene concentrations, α-pinene and Δ3-carene, are consistent with observations.
  • Wang, K.; Liu, C.; Zheng, X.; Pihlatie, M.; Li, B.; Haapanala, S.; Vesala, T.; Liu, H.; Wang, Y.; Liu, G.; Hu, F. (2013)
  • Pikridas, M.; Sciare, J.; Freutel, F.; Crumeyrolle, S.; von der Weiden-Reinmueller, S. -L.; Borbon, A.; Schwarzenboeck, A.; Merkel, M.; Crippa, M.; Kostenidou, E.; Psichoudaki, M.; Hildebrandt, L.; Engelhart, G. J.; Petäjä, T.; Prevot, A. S. H.; Drewnick, F.; Baltensperger, U.; Wiedensohler, A.; Kulmala, M.; Beekmann, M.; Pandis, S. N. (2015)
    Ambient particle number size distributions were measured in Paris, France, during summer (1-31 July 2009) and winter (15 January to 15 February 2010) at three fixed ground sites and using two mobile laboratories and one airplane. The campaigns were part of the Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation (MEGAPOLI) project. New particle formation (NPF) was observed only during summer on approximately 50% of the campaign days, assisted by the low condensation sink (about 10.7 +/- 5.9 x 10(-3) s(-1)). NPF events inside the Paris plume were also observed at 600m altitude onboard an aircraft simultaneously with regional events identified on the ground. Increased particle number concentrations were measured aloft also outside of the Paris plume at the same altitude, and were attributed to NPF. The Paris plume was identified, based on increased particle number and black carbon concentration, up to 200 km away from the Paris center during summer. The number concentration of particles with diameters exceeding 2.5 nm measured on the surface at the Paris center was on average 6.9 +/- 8.7 x 10(4) and 12.1 +/- 8.6 x 10(4) cm(-3) during summer and winter, respectively, and was found to decrease exponentially with distance from Paris. However, further than 30 km from the city center, the particle number concentration at the surface was similar during both campaigns. During summer, one suburban site in the NE was not significantly affected by Paris emissions due to higher background number concentrations, while the particle number concentration at the second suburban site in the SW increased by a factor of 3 when it was downwind of Paris.
  • Kontkanen, Jenni; Paasonen, Pauli; Aalto, Juho; Bäck, Jaana; Rantala, Pekka; Petäjä, Tuukka; Kulmala, Markku (2016)
    The oxidation products of monoterpenes likely have a crucial role in the formation and growth of aerosol particles in boreal forests. However, the continuous measurements of monoterpene concentrations are usually not available on decadal timescales, and the direct measurements of the concentrations of monoterpene oxidation product have so far been scarce. In this study we developed proxies for the concentrations of monoterpenes and their oxidation products at a boreal forest site in Hyytiala, southern Finland. For deriving the proxies we used the monoterpene concentration measured with a proton transfer reaction mass spectrometer (PTR-MS) during 2006-2013. Our proxies for the monoterpene concentration take into account the temperature-controlled emissions from the forest ecosystem, the dilution caused by the mixing within the boundary layer and different oxidation processes. All the versions of our proxies captured the seasonal variation of the monoterpene concentration, the typical proxy-to-measurements ratios being between 0.8 and 1.3 in summer and between 0.6 and 2.6 in winter. In addition, the proxies were able to describe the diurnal variation of the monoterpene concentration rather well, especially in summer months. By utilizing one of the proxies, we calculated the concentration of oxidation products of monoterpenes by considering their production in the oxidation and their loss due to condensation on aerosol particles. The concentration of oxidation products was found to have a clear seasonal cycle, with a maximum in summer and a minimum in winter. The concentration of oxidation products was lowest in the morning or around noon and highest in the evening. In the future, our proxies for the monoterpene concentration and their oxidation products can be used, for example, in the analysis of new particle formation and growth in boreal environments.
  • Dada, Lubna; Ylivinkka, Ilona; Baalbaki, Rima; Li, Chang; Guo, Yishuo; Yan, Chao; Yao, Lei; Sarnela, Nina; Jokinen, Tuija; Dällenbach, Kaspar; Yin, Rujing; Deng, Chenjuan; Chu, Biwu; Nieminen, Tuomo; Wang, Yonghong; Lin, Zhuohui; Thakur, Roseline C.; Kontkanen, Jenni; Stolzenburg, Dominik; Sipila, Mikko; Hussein, Tareq; Paasonen, Pauli; Bianchi, Federico; Salma, Imre; Weidinger, Tamas; Pikridas, Michael; Sciare, Jean; Jiang, Jingkun; Liu, Yongchun; Petaja, Tuukka; Kerminen, Veli-Matti; Kulmala, Markku (2020)
    Sulfuric acid has been shown to be a key driver for new particle formation and subsequent growth in various environments, mainly due to its low volatility. However, direct measurements of gas-phase sulfuric acid are oftentimes not available, and the current sulfuric acid proxies cannot predict, for example, its nighttime concentrations or result in significant discrepancies with measured values. Here, we define the sources and sinks of sulfuric acid in different environments and derive a new physical proxy for sulfuric acid to be utilized in locations and during periods when it is not measured. We used H2SO4 measurements from four different locations: Hyytiala, Finland; Agia Marina, Cyprus; Budapest, Hungary; and Beijing, China, representing semi-pristine boreal forest, rural environment in the Mediterranean area, urban environment and heavily polluted megacity, respectively. The new proxy takes into account the formation of sulfuric acid from SO2 via OH oxidation and other oxidation pathways, specifically via stabilized Criegee intermediates. The sulfuric acid sinks included in the proxy are its condensation sink (CS) and atmospheric clustering starting from H2SO4 dimer formation. Indeed, we found that the observed sulfuric acid concentration can be explained by the proposed sources and sinks with similar coefficients in the four contrasting environments where we have tested it. Thus, the new proxy is a more flexible and an important improvement over previous proxies. Following the recommendations in this paper, a proxy for a specific location can be derived.
  • Carnerero, Cristina; Perez, Noemi; Reche, Cristina; Ealo, Marina; Titos, Gloria; Lee, Hong-Ku; Eun, Hee-Ram; Park, Yong-Hee; Dada, Lubna; Paasonen, Pauli; Kerminen, Veli-Matti; Mantilla, Enrique; Escudero, Miguel; Gomez-Moreno, Francisco J.; Alonso-Blanco, Elisabeth; Coz, Esther; Saiz-Lopez, Alfonso; Temime-Roussel, Brice; Marchand, Nicolas; Beddows, David C. S.; Harrison, Roy M.; Petäjä, Tuukka; Kulmala, Markku; Ahn, Kang-Ho; Alastuey, Andres; Querol, Xavier (2018)
    The vertical profile of new particle formation (NPF) events was studied by comparing the aerosol size number distributions measured aloft and at surface level in a suburban environment in Madrid, Spain, using airborne instruments. The horizontal distribution and regional impact of the NPF events was investigated with data from three urban, urban background, and suburban stations in the Madrid metropolitan area. Intensive regional NPF episodes followed by particle growth were simultaneously recorded at three stations in and around Madrid during a field campaign in July 2016. The urban stations presented larger formation rates compared to the suburban station. Condensation and coagulation sinks followed a similar evolution at all stations, with higher values at urban stations. However, the total number concentration of particles larger than 2.5 nm was lower at the urban station and peaked around noon, when black carbon (BC) levels are at a minimum. The vertical soundings demonstrated that ultrafine particles (UFPs) are formed exclusively inside the mixed layer. As convection becomes more effective and the mixed layer grows, UFPs are detected at higher levels. The morning soundings revealed the presence of a residual layer in the upper levels in which aged particles (nucleated and grown on previous days) prevail. The particles in this layer also grow in size, with growth rates significantly smaller than those inside the mixed layer. Under conditions with strong enough convection, the soundings revealed homogeneous number size distributions and growth rates at all altitudes, which follow the same evolution at the other stations considered in this study. This indicates that UFPs are detected quasi-homogenously in an area spanning at least 17 km horizontally. The NPF events extend over the full vertical extension of the mixed layer, which can reach as high as 3000 m in the area, according to previous studies. On some days a marked decline in particle size (shrinkage) was observed in the afternoon, associated with a change in air masses. Additionally, a few nocturnal nucleation-mode bursts were observed at the urban stations, for which further research is needed to elucidate their origin.