Browsing by Subject "LOW-DENSITY LIPOPROTEINS"

Sort by: Order: Results:

Now showing items 1-6 of 6
  • Taskinen, Marja-Riitta; Packard, Chris J.; Boren, Jan (2019)
    Purpose of ReviewApolipoprotein C-III (apoC-III) is known to inhibit lipoprotein lipase (LPL) and function as an important regulator of triglyceride metabolism. In addition, apoC-III has also more recently been identified as an important risk factor for cardiovascular disease. This review summarizes the mechanisms by which apoC-III induces hypertriglyceridemia and promotes atherogenesis, as well as the findings from recent clinical trials using novel strategies for lowering apoC-III.Recent FindingsGenetic studies have identified subjects with heterozygote loss-of-function (LOF) mutations in APOC3, the gene coding for apoC-III. Clinical characterization of these individuals shows that the LOF variants associate with a low-risk lipoprotein profile, in particular reduced plasma triglycerides. Recent results also show that complete deficiency of apoC-III is not a lethal mutation and is associated with very rapid lipolysis of plasma triglyceride-rich lipoproteins (TRL). Ongoing trials based on emerging gene-silencing technologies show that intervention markedly lowers apoC-III levels and, consequently, plasma triglyceride. Unexpectedly, the evidence points to apoC-III not only inhibiting LPL activity but also suppressing removal of TRLs by LPL-independent pathways.SummaryAvailable data clearly show that apoC-III is an important cardiovascular risk factor and that lifelong deficiency of apoC-III is cardioprotective. Novel therapies have been developed, and results from recent clinical trials indicate that effective reduction of plasma triglycerides by inhibition of apoC-III might be a promising strategy in management of severe hypertriglyceridemia and, more generally, a novel approach to CHD prevention in those with elevated plasma triglyceride.
  • Luukkonen, Panu K.; Zhou, You; Haridas, Nidhina P. A.; Dwivedi, Om P.; Hyotylainen, Tuulia; Ali, Ashfaq; Juuti, Anne; Leivonen, Marja; Tukiainen, Taru; Ahonen, Linda; Scott, Emma; Palmer, Jeremy M.; Arola, Johanna; Orho-Melander, Marju; Vikman, Petter; Anstee, Quentin M.; Olkkonen, Vesa M.; Oresic, Matej; Groop, Leif; Yki-Jarvinen, Hannele (2017)
    Background: Carriers of the transmembrane 6 superfamily member 2 E167K gene variant (TM6SF2(EK/KK)) have decreased expression of the TM6SF2 gene and increased risk of NAFLD and NASH. Unlike common 'obese/metabolic' NAFLD, these subjects lack hypertriglyceridemia and have lower risk of cardiovascular disease. In animals, phosphatidylcholine (PC) deficiency results in a similar phenotype. PCs surround the core of VLDL consisting of triglycerides (TGs) and cholesteryl-esters (CEs). We determined the effect of the TM6SF2 E167K on these lipids in the human liver and serum and on hepatic gene expression and studied the effect of TM6SF2 knockdown on hepatocyte handling of these lipids. Methods: Liver biopsies were taken from subjects characterized with respect to the TM6SF2 genotype, serum and liver lipidome, gene expression and histology. In vitro, after TM6SF2 knockdown in HuH-7 cells, we compared incorporation of different fatty acids into TGs, CEs, and PCs. Results: The TM6SF2(EK/KK) and TM6SF2EE groups had similar age, gender, BMI and HOMA-IR. Liver TGs and CEs were higher and liver PCs lower in the TM6SF2(EK/KK) than the TM6SF2EE group (p Conclusions: Hepatic lipid synthesis from PUFAs is impaired and could contribute to deficiency in PCs and increased intrahepatic TG in TM6SF2 E167K variant carriers. (C) 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
  • Adiels, Martin; Mardinoglu, Adil; Taskinen, Marja-Riitta; Boren, Jan (2015)
    To develop novel strategies for prevention and treatment of dyslipidemia, it is essential to understand the pathophysiology of dyslipoproteinemia in humans. Lipoprotein metabolism is a complex system in which abnormal concentrations of various lipoprotein particles can result from alterations in their rates of production, conversion, and/or catabolism. Traditional methods that measure plasma lipoprotein concentrations only provide static estimates of lipoprotein metabolism and hence limited mechanistic information. By contrast, the use of tracers labeled with stable isotopes and mathematical modeling, provides us with a powerful tool for probing lipid and lipoprotein kinetics in vivo and furthering our understanding of the pathogenesis of dyslipoproteinemia.
  • Olkkonen, Vesa M.; Sinisalo, Juha; Jauhiainen, Matti (2018)
    Remarkably good results have been achieved in the treatment of atherosclerotic cardiovascular diseases (CVD) by using statin, ezetimibe, antihypertensive, antithrombotic, and PCSK9 inhibitor therapies and their proper combinations. However, despite this success, the remaining CVD risk is still high. To target this residual risk and to treat patients who are statin-intolerant or have an exceptionally high CVD risk for instance due to familial hypercholesterolemia (FH), new therapies are intensively sought. One pathway of drug development is targeting the circulating triglyceride-rich lipoproteins (TRL) and their lipolytic remnants, which, according to the current view, confer a major CVD risk. Angiopoietin-like protein 3 (ANGPTL3) and apolipoprotein C-III (apoC-III) are at present the central molecular targets for therapies designed to reduce TRL, and there are new drugs emerging that suppress their expression or inhibit the function of these two key proteins. The medications targeting these components are biological, either human monoclonal antibodies or antisense oligonucleotides. In this article, we briefly review the mechanisms of action of ANGPTL3 and apoC-III, the reasons why they have been considered promising targets of novel therapies for CVD, as well as the current status and the most important results of their clinical trials. (C) 2018 Elsevier B.V. All rights reserved.
  • Steffen, Hannah L. M.; Anderson, Josephine L. C.; Poot, Margot L.; Lei, Yu; Connelly, Margery A.; Bakker, Stephan J. L.; Öörni, Katariina; Tietge, Uwe J. F. (2021)
    Lipoprotein-proteoglycan binding is an early key event in atherosclerotic lesion formation and thus conceivably could play a major role in vasculopathy-driven chronic graft failure and cardiovascular mortality in renal transplant recipients. The present study investigated whether lipoproteinproteoglycan binding susceptibility (LPBS) of apoBcontaining lipoproteins and levels of the classical atherosclerosis biomarker LDL-C were associated with cardiovascular mortality (n = 130) and graft failure (n = 73) in 589 renal transplant recipients who were followed up from at least 1 year after transplantation for 9.5 years. At baseline, LPBS was significantly higher in patients who subsequently developed graft failure than in those with a surviving graft (1.68 +/- 0.93 vs. 1.46 +/- 0.49 nmol/mmol, P = 0.001). Cox regression analysis showed an association between LPBS and chronic graft failure in an age-and sex-adjusted model (hazard ratio: 1.45; 95% CI, 1.14-1.85; P = 0.002), but no association was observed with cardiovascular mortality. LDL-C levels were not associated with graft failure or cardiovascular mortality. This study shows that measurement of cholesterol retention outperformed the traditionally used quantitative parameter of LDL-C levels in predicting graft failure, suggesting a higher relevance of proatherogenic function than the quantity of apoBcontaining lipoproteins in chronic kidney graft failure.
  • Taskinen, Marja-Riitta; Boren, Jan (2016)
    ApoC-III was discovered almost 50 years ago, but for many years, it did not attract much attention. However, as epidemiological and Mendelian randomization studies have associated apoC-III with low levels of triglycerides and decreased incidence of cardiovascular disease (CVD), it has emerged as a novel and potentially powerful therapeutic approach to managing dyslipidemia and CVD risk. The atherogenicity of apoC-III has been attributed to both direct lipoprotein lipase-mediated mechanisms and indirect mechanisms, such as promoting secretion of triglyceride-rich lipoproteins (TRLs), provoking proinflammatory responses in vascular cells and impairing LPL-independent hepatic clearance of TRL remnants. Encouraging results from clinical trials using antisense oligonucleotide, which selectively inhibits apoC-III, indicate that modulating apoC-III may be a potent therapeutic approach to managing dyslipidemia and cardiovascular disease risk.