Browsing by Subject "LUMBER GRADE"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Pyorala, Jiri; Liang, Xinlian; Saarinen, Ninni; Kankare, Ville; Wang, Yunsheng; Holopainen, Markus; Hyyppa, Juha; Vastaranta, Mikko (2018)
    Terrestrial laser scanning (TLS) accompanied by quantitative tree-modeling algorithms can potentially acquire branching data non-destructively from a forest environment and aid the development and calibration of allometric crown biomass and wood quality equations for species and geographical regions with inadequate models. However, TLS's coverage in capturing individual branches still lacks evaluation. We acquired TLS data from 158 Scots pine (Pinus sylvestris L.) trees and investigated the performance of a quantitative branch detection and modeling approach for extracting key branching parameters, namely the number of branches, branch diameter (b(d)) and branch insertion angle (b) in various crown sections. We used manual point cloud measurements as references. The accuracy of quantitative branch detections decreased significantly above the live crown base height, principally due to the increasing scanner distance as opposed to occlusion effects caused by the foliage. b(d) was generally underestimated, when comparing to the manual reference, while b was estimated accurately: tree-specific biases were 0.89cm and 1.98 degrees, respectively. Our results indicate that full branching structure remains challenging to capture by TLS alone. Nevertheless, the retrievable branching parameters are potential inputs into allometric biomass and wood quality equations.
  • Pyörälä, Jiri; Liang, Xinlian; Vastaranta, Mikko; Saarinen, Ninni; Kankare, Ville; Wang, Yunsheng; Holopainen, Markus; Hyyppä, Juha (2018)
    State-of-the-art technology available at sawmills enables measurements of whorl numbers and the maximum branch diameter for individual logs, but such information is currently unavailable at the wood procurement planning phase. The first step toward more detailed evaluation of standing timber is to introduce a method that produces similar wood quality indicators in standing forests as those currently used in sawmills. Our aim was to develop a quantitative method to detect and model branches from terrestrial laser scanning (TLS) point clouds data of trees in a forest environment. The test data were obtained from 158 Scots pines (Pinus sylvestris L.) in six mature forest stands. The method was evaluated for the accuracy of the following branch parameters: Number of whorls per tree and for every whorl, the maximum branch diameter and the branch insertion angle associated with it. The analysis concentrated on log-sections (stem diameter > 15 cm) where the branches most affect wood's value added. The quantitative whorl detection method had an accuracy of 69.9% and a 1.9% false positive rate. The estimates of the maximum branch diameters and the corresponding insertion angles for each whorl were underestimated by 0.34 cm (11.1%) and 0.67 degrees (1.0%), with a root-mean-squared error of 1.42 cm (46.0%) and 17.2 degrees (26.3%), respectively. Distance from the scanner, occlusion, and wind were the main external factors that affect the method's functionality. Thus, the completeness and point density of the data should be addressed when applying TLS point cloud based tree models to assess branch parameters.
  • Mäkelä, A.; Grace, J. C.; Deckmyn, G.; Kantola, A.; Campioli, M. (2010)