Browsing by Subject "Land-use intensity"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Abdi, Abdulhakim; Carrié, Romain; Sidemo-Holm, William; Cai, Zhanzhang; Boke Olén, Niklas; Smith, Henrik G; Eklundh, Lars; Ekroos, Johan Edvard (2021)
    Increasing land-use intensity is a main driver of biodiversity loss in farmland, but measuring proxies for land-use intensity across entire landscapes is challenging. Here, we develop a novel method for the assessment of the impact of land-use intensity on biodiversity in agricultural landscapes using remote sensing parameters derived from the Sentinel-2 satellites. We link crop phenology and productivity parameters derived from time-series of a two-band enhanced vegetation index with biodiversity indicators (insect pollinators and insect-pollinated vascular plants) in agricultural fields in southern Sweden, with contrasting land management (i.e. conventional and organic farming). Our results show that arable land-use intensity in cereal systems dominated by spring-sown cereals can be approximated using Sentinel-2 productivity parameters. This was shown by the significant positive correlations between the amplitude and maximum value of the enhanced vegetation index on one side and farmer reported yields on the other. We also found that conventional cereal fields had 17% higher maximum and 13% higher amplitude of their enhanced vegetation index than organic fields. Sentinel-2 derived parameters were more strongly correlated with the abundance and species richness of bumblebees and the richness of vascular plants than the abundance and species richness of butterflies. The relationships we found between biodiversity and crop production proxies are consistent with predictions that increasing agricultural land-use intensity decreases field biodiversity. The newly developed method based on crop phenology and productivity parameters derived from Sentinel-2 data serves as a proof of concept for the assessment of the impact of land-use intensity on biodiversity over cereal fields across larger areas. It enables the estimation of arable productivity in cereal systems, which can then be used by ecologists and develop tools for land managers as a proxy for land-use intensity. Coupled with spatially explicit databases on agricultural land-use, this method will enable crop-specific cereal productivity estimation across large geographical regions.
  • Singh, Jaswinder; Cameron, Erin; Reitz, Thomas; Schädler, Martin; Eisenhauer, Nico (2021)
    Abstract The impacts of climate change on biodiversity can be modulated by other changing environmental conditions, e.g. induced by land-use change. The potential interactive effects of climate change and land use have rarely been studied for soil organisms. To test the effects of changing climatic conditions and land use on soil invertebrates, we examined earthworm communities across different seasons in different grassland-use types (intensively managed grassland, extensively managed meadow, and extensively managed sheep pasture).We predicted that the strength of climate change effects would vary with season and land use. Overall, extracted earthworm populations showed the strongest variations in response to the season, indicating major differences in activity patterns and extraction efficiency, while climate change and different grassland-use types had fewer and weaker effects. Future climate, characterized by slightly higher precipitation in spring and fall but a strong reduction during the summer, had positive effects on the abundance of extracted adult earthworms in spring but then reduced the abundance of active earthworms across the remaining seasons. In contrast, the total biomass of juveniles tended to be consistently lower under future climate conditions. Earthworm species responded differently to the climate change and different grassland management types, and these species-specific responses further varied strongly across seasons. Intensive grassland management had negative effects, due to plant community composition, while sheep grazing favoured earthworm populations, due to dung deposition. There were only limited interactive effects between climate and land use, which thus did not support our main hypothesis. Nevertheless, these results highlight the complex and context-dependent responses of earthworm communities and activity patterns to climate change, with potential consequences for long-term population dynamics and crucial ecosystem functions. This article is protected by copyright. All rights reserved.