Browsing by Subject "Large igneous province"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Heinonen, Jussi S.; Luttinen, Arto V.; Spera, Frank J.; Bohrson, Wendy A. (2019)
    Karoo continental flood basalt (CFB) province is known for its highly variable trace element and isotopic composition, often attributed to the involvement of continental lithospheric sources. Here, we report oxygen isotopic compositions measured with secondary ion mass spectrometry for hand-picked olivine phenocrysts from similar to 190 to 180 Ma CFBs and intrusive rocks from Vestfjella, western Dronning Maud Land, that form an Antarctic extension of the Karoo province. The Vestfjella lavas exhibit heterogeneous trace element and radiogenic isotope compositions (e.g., epsilon(Nd) from -16 to +2 at 180 Ma) and the involvement of continental lithospheric mantle and/or crust in their petrogenesis has previously been suggested. Importantly, our sample set also includes rare primitive dikes that have been derived from depleted asthenospheric mantle sources (epsilon(Nd) up to + 8 at 180 Ma). The majority of the oxygen isotopic compositions of the olivines from these dike rocks (delta O-18 = 4.4-5.2%; Fo = 78-92 mol%) are also compatible with such sources. The olivine phenocrysts in the lavas, however, are characterized by notably higher delta O-18 (6.2-7.5%; Fo = 70-88 mol%); and one of the dike samples gives intermediate compositions (5.2-6.1%, Fo = 83-87 mol%) between the other dikes and the CFBs. The oxygen isotopic compositions do not correlate with radiogenic isotope compositions susceptible to crustal assimilation (Sr, Nd, and Pb) or with geochemical indicators of pyroxene-rich mantle sources. Instead, delta O-18 correlates positively with enrichments in large-ion lithophile elements (especially K) and Os-187. We suggest that the oxygen isotopic compositions of the Vestfjella CFB olivines primarily record large-scale subduction-related metasomatism of the sub-Gondwanan mantle (base of the lithosphere or deeper) prior to Karoo magmatism. The overall influence of such sources to Karoo magmatism is not known, but, in addition to continental lithosphere, they may be responsible for some of the geochemical heterogeneity observed in the CFBs.
  • Heinonen, Jussi S.; Luttinen, Arto V.; Whitehouse, M.J. (2018)
    Karoo continental flood basalt (CFB) province is known for its highly variable trace element and isotopic composition, often attributed to the involvement of continental lithospheric sources. Here, we report oxygen isotopic compositions measured with secondary ion mass spectrometry for hand-picked olivine phenocrysts from similar to 190 to 180 Ma CFBs and intrusive rocks from Vestfjella, western Dronning Maud Land, that form an Antarctic extension of the Karoo province. The Vestfjella lavas exhibit heterogeneous trace element and radiogenic isotope compositions (e.g., epsilon(Nd) from -16 to +2 at 180 Ma) and the involvement of continental lithospheric mantle and/or crust in their petrogenesis has previously been suggested. Importantly, our sample set also includes rare primitive dikes that have been derived from depleted asthenospheric mantle sources (epsilon(Nd) up to + 8 at 180 Ma). The majority of the oxygen isotopic compositions of the olivines from these dike rocks (delta O-18 = 4.4-5.2%; Fo = 78-92 mol%) are also compatible with such sources. The olivine phenocrysts in the lavas, however, are characterized by notably higher delta O-18 (6.2-7.5%; Fo = 70-88 mol%); and one of the dike samples gives intermediate compositions (5.2-6.1%, Fo = 83-87 mol%) between the other dikes and the CFBs. The oxygen isotopic compositions do not correlate with radiogenic isotope compositions susceptible to crustal assimilation (Sr, Nd, and Pb) or with geochemical indicators of pyroxene-rich mantle sources. Instead, delta O-18 correlates positively with enrichments in large-ion lithophile elements (especially K) and Os-187. We suggest that the oxygen isotopic compositions of the Vestfjella CFB olivines primarily record large-scale subduction-related metasomatism of the sub-Gondwanan mantle (base of the lithosphere or deeper) prior to Karoo magmatism. The overall influence of such sources to Karoo magmatism is not known, but, in addition to continental lithosphere, they may be responsible for some of the geochemical heterogeneity observed in the CFBs.
  • Beier, Christoph; Bach, Wolfgang; Busch, Alexander V.; Genske, Felix S.; Hübscher, Christian; Krumm, Stefan H. (2019)
    The initial formation and temporal evolution of large igneous plateaus and the extent to which these large enigmatic igneous features impact on their immediate and distant ecological surrounding remains a matter of active research. The compositional variability in large igneous provinces has mainly been attributed to changes in the melting regime and shallow crustal processes and commonly ranges from depleted tholeiitic basaltic to enriched alkaline lavas. Large igneous provinces erupted in the submarine environment however, may also experience intense hydrothermal alteration during their formation resulting from an increased exchange between seawater and the erupting lavas during their eruptive history. The submarine Azores Plateau in the Central Northern Atlantic has generally been treated to represent such large igneous province formed since similar to 10 Ma by widespread volcanism and the unique tectonic regime which results in large fault systems exposing the erupted lavas. Here, we present new seismic, petrological and major element, trace element and isotope geochemical data from a similar to 1000 m stratigraphic section of submarine lavas exposed at the western Princessa Alice bank. The 22 samples recovered from the near-vertical rift wall provide evidence for intense water-rock exchange not observed anywhere in oceanic crust sampled to date. Fluid-immobile incompatible trace elements show that the samples formed from higher degrees of partial melting of a mantle source that is less enriched than the source that gives rise to the islands today. The extents of melting today are very small, implying a change in melting regime since initial formation of the Princessa Alice Plateau basalts that correspond to a melting anomaly in the Azores. Our observations indicate that the extreme levels of alteration may result from a combination of intensified magmatic activity during initial formation of the Azores Plateau and the tectonic regime providing pathways for the fluids. Our results impact on the interpretation of shallow level crustal magmatic processes, in which the contribution of crustal sources to the ascending melt may be different to what had previously been suggested. We propose that hydrothermal alteration during submarine igneous plateau forming events can drastically change the compositions of the igneous crust. The associated elemental and isotopic exchange between the oceanic crust and hydrosphere may substantially change the chemical fluxes between oceans and crust during the emplacement of oceanic plateaus. (C) 2019 Elsevier Ltd. All rights reserved.
  • Turunen, Sanni T.; Luttinen, Arto V.; Heinonen, Jussi S.; Jamal, Daúd L. (2019)
    We present geochemical and isotopic (Nd, Sr) data for a picrite lava suite from the Luenha River and adjacent areas in Mozambique. The Luenha picrites represent a previously unknown type of picrites related to the Karoo large igneous province (LIP) and are distinguished by their notably low TiO2 contents (0.3-1.0 wt%) and coupling of high Nb/Y with low Zr/Y and Sm/Yb. Relatively high CaO and low Zn/Fe point to a peridotitic mantle source. Contamination-sensitive incompatible element ratios show that one lava flow is likely to be uncontaminated by the crust and its composition suggests a mantle source with primitive mantle-like incompatible element ratios and mildly depleted isotopic ratios (initial Sr-87/Sr-86 = 0.7041 and epsilon(Nd) = +1.4 at 180 Ma). The primary melts of the Luenha picrites had MgO contents in the range of 13-21 wt%. Our preferred estimate for a primary melt composition (MgO = 18 wt%) resembles experimental melts of fertile mantle peridotite at 3-4 GPa and indicates liquidus temperature of 1445-1582 degrees C. Geochemical similarities suggest the Luenha picrites were generated from the same overall primitive mantle-like reservoir that produced the main volume of Karoo flood basalts in the Karoo, Kalahari, and Zambezi basins, whereas the previously identified enriched and depleted (upper) mantle sources of Karoo picrite suites (Mwenezi, Antarctica) were subordinate sources for flood basalts. We propose that the Luenha picrites record melting of a hot, chemically primitive mantle plume source that may have been rooted in the sub-African large low shear velocity province boundary and that such a source might have been the most significant magma source in the Karoo LIP. (C) 2019 The Author(s). Published by Elsevier B.V.